@article{AIHPC_1996__13_5_567_0,
author = {Cao, Daomin and Noussair, Ezzat S.},
title = {Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {567--588},
year = {1996},
publisher = {Gauthier-Villars},
volume = {13},
number = {5},
mrnumber = {1409663},
zbl = {0859.35032},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1996__13_5_567_0/}
}
TY - JOUR
AU - Cao, Daomin
AU - Noussair, Ezzat S.
TI - Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
SP - 567
EP - 588
VL - 13
IS - 5
PB - Gauthier-Villars
UR - https://www.numdam.org/item/AIHPC_1996__13_5_567_0/
LA - en
ID - AIHPC_1996__13_5_567_0
ER -
%0 Journal Article
%A Cao, Daomin
%A Noussair, Ezzat S.
%T Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$
%J Annales de l'I.H.P. Analyse non linéaire
%D 1996
%P 567-588
%V 13
%N 5
%I Gauthier-Villars
%U https://www.numdam.org/item/AIHPC_1996__13_5_567_0/
%G en
%F AIHPC_1996__13_5_567_0
Cao, Daomin; Noussair, Ezzat S. Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 5, pp. 567-588. https://www.numdam.org/item/AIHPC_1996__13_5_567_0/
[1] and , On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. | Zbl | MR
[2] and , On a min-max procedure for the existence of a positive solution for certain scalar field equation in RN ., Revista Mat. Iberoamericana, Vol. 6, 1990, pp. 1-15. | Zbl | MR
[3] and , On the existence of a positive solution of semilinear elliptic equations in unbounded domains, preprint.
[4] and , The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal., Vol. 114, 1991, pp. 79-93. | Zbl | MR
[5] and , A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490. | Zbl | MR
[6] , Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in RN., Nonlinear Anal. TMA., Vol. 15, 1990, pp. 1045-1052. | Zbl | MR
[7] and , Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA., Vol. 18, 1992, pp. 109-119. | Zbl | MR
[8] , Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris, I, Vol. 299, 1984, pp. 209-212. | Zbl | MR
[9] , On the variational principle, J. Math. Anal. Appl., Vol. 17, 1974, pp. 324-353. | Zbl | MR
[10] , Uniqueness of positive solutions of Δu - u + up = 0 in RN., Arch. Rat. Mech. Anal., Vol. 105, 1989, pp. 243-266. | Zbl | MR
[11] , Remarks on a semilinear elliptic equation on RN., J. Diff. Equats., Vol. 74, 1988, pp. 34-49. | Zbl | MR
[12] , The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 1, 1984, pp. 102-145 and 223-283. | Zbl | MR | Numdam
[13] , On positive solutions of semilinear elliptic equations in unbounded domains, in "Nonlinear Diffusion Equations and their equilibrium States", Springer, New York, 1988. | Zbl | MR
[14] and , On the existence of nodal solutions of the equation -Δu = |u|2*-2u with Dirichlet boundary conditions, Differential and Integral Equations, Vol. 6, 1993, pp. 849-862. | Zbl | MR
[15] , Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. | Zbl | MR
[16] , On nonhomogenous elliptic equations involving critical Sobolev exponent, Ann. I.H.P. Anal. non linéaire, Vol. 9, 1992, pp. 281-304. | Zbl | MR | Numdam
[17] , Multiple entire solutions of semilinear elliptic equation, Nonlinear Anal. TMA., Vol. 12, 1988, pp. 1297-1316. | Zbl | MR






