@article{AIHPC_1986__3_4_331_0,
author = {Tomi, Friedrich},
title = {A finiteness result in the free boundary value problem for minimal surfaces},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {331--343},
year = {1986},
publisher = {Gauthier-Villars},
volume = {3},
number = {4},
mrnumber = {853386},
zbl = {0603.49028},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1986__3_4_331_0/}
}
TY - JOUR AU - Tomi, Friedrich TI - A finiteness result in the free boundary value problem for minimal surfaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 1986 SP - 331 EP - 343 VL - 3 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1986__3_4_331_0/ LA - en ID - AIHPC_1986__3_4_331_0 ER -
Tomi, Friedrich. A finiteness result in the free boundary value problem for minimal surfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986) no. 4, pp. 331-343. https://www.numdam.org/item/AIHPC_1986__3_4_331_0/
[1] , , Topologie. Erster Band., Springer, Berlin, 1935.
[2] , Vorlesungen über Differentialgeometrie. I. Elementare Differential geometrie., Springer, Berlin, 1945. | Zbl
[3] , Dirichlet's principle, conformal mapping and minimal surfaces. Interscience Publ., New York, 1950. | Zbl | MR
[4] , Randwertprobleme für Flächen mit vorgeschriebener mittlerer
Krümmung und Anwendungen auf die Kapillaritätstheorie. II. Freie Ränder. Arch. Rat. Mech. Analysis, t. 39, 1970, p. 275-293. | MR
[5] , Ein einfacher Beweis für die Regularität der Lösungen gewisser zweidimensionaler Variationsprobleme unter freien Randbedingungen. Math. Ann., t. 194, 1971, p. 316-331. | Zbl | MR
[6] , Behavior of minimal surfaces with free boundaries. Comm. Pure Appl. Math., t. 23, 1970, p. 803-818. | Zbl | MR
[7] , , Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math., t. 112, 1980, p. 441-484. | Zbl | MR
[8] , Vorlesungen über Minimalflächen. Springer, Berlin-Heidelberg- New York, 1975. | Zbl | MR
[9] , Threllfall, Lehrbuch der Topologie. Chelsea Publ. Co., New York.
[10] , On the local uniqueness of the problem of least area. Archive Rat. Mech. Analysis, t. 52, 1973, p. 312-318. | Zbl | MR






