In this article we consider rough differential equations (RDEs) driven by non-geometric rough paths, using the concept of branched rough paths introduced in (J. Differential Equations 248 (2010) 693–721). We first show that branched rough paths can equivalently be defined as -Hölder continuous paths in some Lie group, akin to geometric rough paths. We then show that every branched rough path can be encoded in a geometric rough path. More precisely, for every branched rough path lying above a path , there exists a geometric rough path lying above an extended path , such that contains all the information of . As a corollary of this result, we show that every RDE driven by a non-geometric rough path can be rewritten as an extended RDE driven by a geometric rough path . One could think of this as a generalisation of the Itô–Stratonovich correction formula.
Dans cet article, nous considérons des équations différentielles conduites par des trajectoires rugueuses non-géométriques en utilisant le concept de trajectoire rugueuse ramifiée introduit dans (J. Differential Equations 248 (2010) 693–721). Nous montrons d’abord que celles-ci peuvent être définies de manière équivalente comme une fonction -Hölderienne à valeurs dans un certain groupe de Lie, comme c’est le cas pour les trajectoires rugueuses dites « géométriques » . Nous montrons ensuite que toute trajectoire rugueuse ramifiée peut être encodée par une trajectoire rugueuse géométrique. Plus précisément, pour toute trajectoire rugueuse ramifiée définie au-dessus d’une trajectoire , il existe une trajectoire rugueuse géométrique définie au-dessus d’une trajectoire étendue , de manière à ce que contienne toute l’information de . Il en suit que toute équation différentielle conduite par peut être reformulée comme une équation différentielle modifiée conduite par . On peut interpréter ceci comme une généralisation de la formule de correction Itô–Stratonovich.
Keywords: rough paths, Hopf algebra, integration
@article{AIHPB_2015__51_1_207_0,
author = {Hairer, Martin and Kelly, David},
title = {Geometric versus non-geometric rough paths},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {207--251},
year = {2015},
publisher = {Gauthier-Villars},
volume = {51},
number = {1},
doi = {10.1214/13-AIHP564},
mrnumber = {3300969},
zbl = {06412903},
language = {en},
url = {https://www.numdam.org/articles/10.1214/13-AIHP564/}
}
TY - JOUR AU - Hairer, Martin AU - Kelly, David TI - Geometric versus non-geometric rough paths JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 207 EP - 251 VL - 51 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP564/ DO - 10.1214/13-AIHP564 LA - en ID - AIHPB_2015__51_1_207_0 ER -
%0 Journal Article %A Hairer, Martin %A Kelly, David %T Geometric versus non-geometric rough paths %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 207-251 %V 51 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP564/ %R 10.1214/13-AIHP564 %G en %F AIHPB_2015__51_1_207_0
Hairer, Martin; Kelly, David. Geometric versus non-geometric rough paths. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 207-251. doi: 10.1214/13-AIHP564
[1] . Hopf Algebras. Cambridge Tracts in Mathematics 74. Cambridge Univ. Press, Cambridge, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. | Zbl
[2] . Trees, renormalization and differential equations. BIT 44 (2004) 425–438. | Zbl | MR | DOI
[3] and . Itô formula for an asymptotically -stable process. Ann. Appl. Probab. 6 (1996) 200–217. | Zbl | MR | DOI
[4] and . A change of variable formula with Itô correction term. Ann. Probab. 38 (2010) 1817–1869. | Zbl | MR | DOI
[5] . An algebraic theory of integration methods. Math. Comp. 26 (1972) 79–106. | Zbl | MR | DOI
[6] , , and . Smoothness of the density for solutions to Gaussian Rough Differential Equations, 2012. | Zbl
[7] , and . Algebraic structures of B-series. Found. Comput. Math. 10 (2010) 407–427. | Zbl | MR | DOI
[8] . Iterated path integrals. Bull. Amer. Math. Soc. 83 (1977) 831–879. | Zbl | MR | DOI
[9] and . Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203–242. | Zbl | MR | DOI
[10] and . Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140. | Zbl | MR | DOI
[11] , and . Hopf Algebras: An Introduction. Monographs and Textbooks in Pure and Applied Mathematics 235. Marcel Dekker, New York, 2001. | Zbl | MR
[12] . Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express. 2 (2007). | Zbl | MR
[13] and . -covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes. Stochastic Process. Appl. 104 (2003) 259–299. | Zbl | MR | DOI
[14] . An introduction to Hopf algebras of trees. Preprint, 2013.
[15] and . Hardy Spaces on Homogeneous Groups. Mathematical Notes 28. Princeton Univ. Press, Princeton, NJ, 1982. | Zbl | MR
[16] and . A note on the notion of geometric rough paths. Probab. Theory Related Fields 136 (2006) 395–416. | Zbl | MR | DOI
[17] and . Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 369–413. | Zbl | MR | Numdam | DOI
[18] and . Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge Univ. Press, Cambridge, 2010. | Zbl | MR | DOI
[19] , , and . -order integrals and generalized Itô’s formula: The case of a fractional Brownian motion with any Hurst index. Ann. Inst. Henri Poincaré Probab. Stat. 41 (2005) 781–806. | Zbl | MR | Numdam | DOI
[20] and . Hopf-algebraic structure of families of trees. J. Algebra 126 (1989) 184–210. | Zbl | MR | DOI
[21] . Controlling rough paths. J. Funct. Anal. 216 (2004) 86–140. | Zbl | MR | DOI
[22] . Ramification of rough paths. J. Differential Equations 248 (2010) 693–721. | Zbl | MR | DOI
[23] and . On the Butcher group and general multi-value methods. Computing (Arch. Elektron. Rechnen) 13 (1974) 1–15. | Zbl | MR
[24] An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics 113. Cambridge Univ. Press, Cambridge, 2008. | Zbl | MR
[25] and . On -rough paths. J. Differential Equations 225 (2006) 103–133. | Zbl | MR | DOI
[26] . Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. | Zbl | MR | DOI
[27] , and . Differential Equations Driven by Rough Paths. Lecture Notes in Mathematics 1908. Springer, Berlin, 2007. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004. With an introduction concerning the Summer School by Jean Picard. | Zbl | MR
[28] and . An extension theorem to rough paths. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 835–847. | Zbl | MR | Numdam | DOI
[29] . Hopf algebras, from basics to applications to renormalization. ArXiv Mathematics e-prints, 2004.
[30] . Free Lie Algebras. London Mathematical Society Monographs. New Series. Oxford Science Publications 7. The Clarendon Press, Oxford Univ. Press, New York, 1993. | Zbl | MR
[31] . Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin, New York, 1969. | Zbl | MR
[32] . Levy area for the free Brownian motion: Existence and non-existence. J. Funct. Anal. 208 (2004) 107–121. | Zbl | MR | DOI
Cité par Sources :






