We show that the only flow solving the stochastic differential equation (SDE) on
Nous montrons que le seul flot solution de l’équation différentielle stochastique (EDS) sur
Keywords: stochastic flows, coalescing flow, Arratia flow or brownian web, brownian motion with oblique reflection on a wedge
@article{AIHPB_2014__50_4_1323_0,
author = {Le Jan, Yves and Raimond, Olivier},
title = {Three examples of brownian flows on $\mathbb {R}$},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {1323--1346},
year = {2014},
publisher = {Gauthier-Villars},
volume = {50},
number = {4},
doi = {10.1214/13-AIHP541},
mrnumber = {3269996},
zbl = {06377556},
language = {en},
url = {https://www.numdam.org/articles/10.1214/13-AIHP541/}
}
TY - JOUR
AU - Le Jan, Yves
AU - Raimond, Olivier
TI - Three examples of brownian flows on $\mathbb {R}$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
SP - 1323
EP - 1346
VL - 50
IS - 4
PB - Gauthier-Villars
UR - https://www.numdam.org/articles/10.1214/13-AIHP541/
DO - 10.1214/13-AIHP541
LA - en
ID - AIHPB_2014__50_4_1323_0
ER -
%0 Journal Article
%A Le Jan, Yves
%A Raimond, Olivier
%T Three examples of brownian flows on $\mathbb {R}$
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 1323-1346
%V 50
%N 4
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/13-AIHP541/
%R 10.1214/13-AIHP541
%G en
%F AIHPB_2014__50_4_1323_0
Le Jan, Yves; Raimond, Olivier. Three examples of brownian flows on $\mathbb {R}$. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1323-1346. doi: 10.1214/13-AIHP541
[1] . Brownian motion on the line. Ph.D. dissertation, Univ. Wisconsin, Madison, 1979.
[2] , and . On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations with jumps. Preprint, 2011. Available at arXiv:1108.4016.
[3] , and . The Skorokhod problem in a time-dependent interval. Stochastic Process. Appl. 119 (2009) 428-452. | Zbl | MR
[4] and . Lenses in skew Brownian flow. Ann. Probab. 32 (2004) 3085-3115. | Zbl | MR
[5] , , and . The Brownian web. Proc. Natl. Acad. Sci. USA 99 (2002) 15888-15893 (electronic). | Zbl | MR
[6] , , and . The Brownian web: Characterization and convergence. Ann. Probab. 32 (2004) 2857-2883. | Zbl | MR
[7] . Discrete approximations to solution flows of Tanaka's SDE related to Walsh Brownian motion. In Séminaire de Probabilités XLIV 167-190. Lecture Notes in Math. 2046. Springer, Heidelberg, 2012. | Zbl | MR
[8] . Stochastic flows related to Walsh Brownian motion. Electron. J. Probab. 16 (2011) 1563-1599 (electronic). | Zbl | MR
[9] and . A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab. 38 (2010) 1062-1105. | Zbl | MR
[10] and . Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springerg, New York, 1991. | Zbl | MR
[11] and . Integration of Brownian vector fields. Ann. Probab. 30 (2002) 826-873. | Zbl | MR
[12] and . Flows, coalescence and noise. Ann. Probab. 32 (2004) 1247-1315. | Zbl | MR
[13] and . Stochastic flows on the circle. In Probability and Partial Differential Equations in Modern Applied Mathematics 151-162. IMA Vol. Math. Appl. 140. Springer, New York, 2005. | Zbl | MR
[14] and . Flows associated to Tanaka's SDE. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 21-34. | Zbl | MR
[15] . Flots stochastiques d'opérateurs dirigés par des bruits gaussiens et poissonniens. Ph.D. dissertation, Univ. Paris-Sud, 2007.
[16] and . Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250-1310. | Zbl | MR
[17] and . Global -solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137-176. | Zbl | MR
[18] . The solution of the perturbed Tanaka equation is pathwise unique. Preprint, 2011. Available at arXiv:1104.0740. | Zbl | MR
[19] . Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11 (2006) 934-992 (electronic). | Zbl | MR
[20] . Nonclassical stochastic flows and continuous products. Probab. Surv. 1 (2004) 173-298 (electronic). | Zbl | MR
[21] and . Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math. 38 (1985) 405-443. | Zbl | MR
[22] . Reflected Brownian motion in a wedge: Semimartingale property. Z. Wahrsch. Verw. Gebiete 69 (1985) 161-176. | Zbl | MR
Cité par Sources :






