Take a centered random walk and consider the sequence of its partial sums . Suppose is in the domain of normal attraction of an -stable law with . Assuming that is either right-exponential (i.e. for some and all ) or right-continuous (skip free), we prove that
Soit une marche aléatoire centrée, nous considérons la suite de ses sommes partielles . Nous supposons que est dans le domaine d’attraction normale d’une loi -stable avec . En supposant que est soit exponentielle à droite (i.e. ), soit continue à droite (i.e. ), nous prouvons que
Keywords: integrated random walk, persistence, one-sided exit probability, unilateral small deviations, area of random walk, Sparre-Andersen theorem, stable excursion, area of excursion
@article{AIHPB_2014__50_1_195_0,
author = {Vysotsky, Vladislav},
title = {Positivity of integrated random walks},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {195--213},
year = {2014},
publisher = {Gauthier-Villars},
volume = {50},
number = {1},
doi = {10.1214/12-AIHP487},
mrnumber = {3161528},
zbl = {1293.60053},
language = {en},
url = {https://www.numdam.org/articles/10.1214/12-AIHP487/}
}
TY - JOUR AU - Vysotsky, Vladislav TI - Positivity of integrated random walks JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 195 EP - 213 VL - 50 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP487/ DO - 10.1214/12-AIHP487 LA - en ID - AIHPB_2014__50_1_195_0 ER -
Vysotsky, Vladislav. Positivity of integrated random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 195-213. doi: 10.1214/12-AIHP487
[1] and . Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49(1) (2013) 236-251. | Zbl | MR | Numdam
[2] . Lévy Processes. Cambridge University Press, New York, 1996. | Zbl | MR
[3] . Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | Zbl | MR
[4] . On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480-485. | Zbl | MR
[5] and . Pinning and wetting transition for ()-dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008) 2388-2433. | Zbl | MR
[6] , and . Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49(3) (2013) 873-884. | Zbl | MR | Numdam
[7] . Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351-360. | Zbl | MR
[8] . One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451-465. | Zbl | MR
[9] . On the rate of convergence to a stable law. Theor. Probab. Appl. 25 (1980) 180-187. | Zbl | MR
[10] . An Introduction to Probability Theory and Its Applications 2. Wiley, New York, 1966. | Zbl | MR
[11] and . Fluctuations of random walk in and storage systems. Adv. in Appl. Prob. 9 (1977) 566-587. | Zbl | MR
[12] and . Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | Zbl | MR
[13] and . An asymptotic formula for the Kolmogorov Diffusion and a refinement of Sinai's estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A 70 (1994) 271-276. | Zbl | MR
[14] . Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas. Probab. Surveys 4 (2007) 80-145. | Zbl | MR
[15] . Ratio theorems for random walks II. J. Anal. Math. 11 (1963) 323-379. | Zbl | MR
[16] . Persistence in nonequilibrium systems. Current Sci. 77 (1999) 370-375.
[17] . On the asymptotic behaviour of one-sided large deviation probabilities. Theory Probab. Appl. 26 (1982) 362-366. | Zbl
[18] and . A bivariate stable characterization and domains of attraction. J. Multivariate Anal. 9 (1979) 206-221. | Zbl | MR
[19] . A class of conditional limit theorems related to ruin problem. Ann. Probab. 11 (1983) 40-45. | Zbl | MR
[20] . Distribution of some functionals of the integral of a random walk. Theor. Math. Phys. 90 (1992) 219-241. | Zbl | MR
[21] and . Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009) 177-217. | Zbl | MR
[22] . Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab. 18 (2008) 1026-1058. | Zbl | MR
[23] . On the probability that integrated random walks stay positive. Stochastic Process. Appl. 120 (2010) 1178-1193. | Zbl | MR
[24] . One-Dimensional Stable Distributions. Amer. Math. Soc., Providence, RI, 1986. | Zbl | MR
Cité par Sources :





