We consider a family of nonlinear stochastic heat equations of the form , where denotes space-time white noise, the generator of a symmetric Lévy process on , and is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure . Tight a priori bounds on the moments of the solution are also obtained. In the particular case that for some , we prove that if is a finite measure of compact support, then the solution is with probability one a bounded function for all times .
Nous considérons une famille d’équations de la chaleur stochastique de la forme , où est un bruit-blanc espace-temps, est le générateur d’un processus de Lévy symétrique sur , et est une fonction lipschizienne s’annulant en . Nous montrons que cette équation aux dérivées partielles stochastique a une solution de type champ aléatoire pour toute mesure initiale finie . Nous obtenons également des bornes a priori sur les moments de la solution. Dans le cas particulier où pour un , nous montrons que si est une mesure finie à support compact, la solution est presque sûrement une fonction bornée pour tout .
Keywords: The stochastic heat equation, singular initial data
@article{AIHPB_2014__50_1_136_0,
author = {Conus, Daniel and Joseph, Mathew and Khoshnevisan, Davar and Shiu, Shang-Yuan},
title = {Initial measures for the stochastic heat equation},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {136--153},
year = {2014},
publisher = {Gauthier-Villars},
volume = {50},
number = {1},
doi = {10.1214/12-AIHP505},
mrnumber = {3161526},
zbl = {1288.60077},
language = {en},
url = {https://www.numdam.org/articles/10.1214/12-AIHP505/}
}
TY - JOUR AU - Conus, Daniel AU - Joseph, Mathew AU - Khoshnevisan, Davar AU - Shiu, Shang-Yuan TI - Initial measures for the stochastic heat equation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 136 EP - 153 VL - 50 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP505/ DO - 10.1214/12-AIHP505 LA - en ID - AIHPB_2014__50_1_136_0 ER -
%0 Journal Article %A Conus, Daniel %A Joseph, Mathew %A Khoshnevisan, Davar %A Shiu, Shang-Yuan %T Initial measures for the stochastic heat equation %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 136-153 %V 50 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP505/ %R 10.1214/12-AIHP505 %G en %F AIHPB_2014__50_1_136_0
Conus, Daniel; Joseph, Mathew; Khoshnevisan, Davar; Shiu, Shang-Yuan. Initial measures for the stochastic heat equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 136-153. doi: 10.1214/12-AIHP505
[1] and . The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 (1994) 1377-1402. | Zbl | MR
[2] and . Macdonald processes. Preprint, 2012. Available at http://arxiv.org/abs/1111.4408. | MR
[3] . Martingale transforms. Ann. Math. Statist. 37 (1966) 1494-1504. | Zbl | MR
[4] , and . Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability II 223-240. Univ. California Press, Berkeley, CA, 1972. | Zbl | MR
[5] and . Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 (1970) 249-304. | Zbl | MR
[6] and . estimates for multiple stochastic integrals. Ann. Probab. 19 (1991) 354-368. | Zbl | MR
[7] and . Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) vii + 129. | Zbl | MR
[8] and . Parabolic Anderson model driven by space-time white noise in with Schwartz distribution-valued initial data: Solutions and explicit formula for second moments. Preprint, 2011.
[9] and . Weak nonmild solutions to some SPDEs. Illinois J. Math. 54(4) (2010) 1329-1341. | Zbl | MR
[10] , and . On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. To appear. Available at http://arxiv.org/abs/1104.0189. | Zbl | MR
[11] . Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999) Paper no. 6, 29 (electronic). | Zbl | MR
[12] and . Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab. 8 (2003) Paper no. 1, 21 (electronic). | Zbl | MR
[13] . On the norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976) 697-704. | Zbl | MR
[14] and . On the global maximum of the solution to a stochastic heat equation with compact-support initial data, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 895-907. | Zbl | MR | Numdam
[15] and . Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J. Probab. 14 (2009) Paper no. 12, 548-568 (electronic). | Zbl | MR
[16] , and . A local time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc. 363 (2011) 2481-2515. | Zbl | MR
[17] and . Generalized Functions, Vol. 4: Applications of harmonic analysis. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]. Translated from the Russian by Amiel Feinstein. | Zbl | MR
[18] and . On the stochastic Burgers' equation in the real line. Ann. Probab. 27 (1999) 782-802. | Zbl | MR
[19] . Pseudo Differential Operators and Markov Processes, Vol. III. Imperial College Press, London, 2005. | Zbl | MR
[20] . Roughening by impurities at finite temperatures. Phys. Rev. Lett. 55 (1985) 2923.
[21] , and . Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl
[22] . On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991) 225-245. | Zbl | MR
[23] . An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV - 1984 265-439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | Zbl | MR
Cité par Sources :






