Husseini, Ryad; Kassmann, Moritz
Jump processes, L-harmonic functions, continuity estimates and the Feller property
Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4 , p. 1099-1115
Zbl 1203.60125 | MR 2572166
doi : 10.1214/08-AIHP208
URL stable : http://www.numdam.org/item?id=AIHPB_2009__45_4_1099_0

Classification:  60J75,  35B45,  31C05,  47D07
Soit ν = { ν ( x , · ) } x d une famille de mesures de Lévy, ce travail étudie la régularité de fonctions harmoniques et la propriété de Feller du processus de saut correspondant. Le but principal est d'établir des estimations de continuité pour les fonctions harmoniques sous des conditions faibles sur la famille ν . À la différence des contributions précédentes cette méthode couvre des cas où les bornes inférieures de la probabilité d'atteindre de petits ensembles dégénèrent.
Given a family of Lévy measures ν = { ν ( x , · ) } x d , the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family ν . Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.

Bibliographie

[1] M. T. Barlow, R. F. Bass, Z.-Q. Chen and M. Kassmann. Non-local Dirichlet form and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963-1999. MR 2465826 | Zbl 1166.60045

[2] R. F. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc. 357(2) (2005) 837-850 (electronic). MR 2095633 | Zbl 1052.60060

[3] R. F. Bass and M. Kassmann. Hölder continuity of harmonic functions with respect to operators of variable orders. Comm. Partial Differential Equations 30 (2005) 1249-1259. MR 2180302 | Zbl 1087.45004

[4] R. F. Bass and D. A. Levin. Harnack inequalities for jump processes. Potential Anal. 17(4) (2002) 375-388. MR 1918242 | Zbl 0997.60089

[5] R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc. 354(7) (2002) 2933-2953. MR 1895210 | Zbl 0993.60070

[6] R. F. Bass, M. Kassmann and T. Kumagai. Symmetric jump processes: Localization, heat kernels, and convergence. Ann. Inst. H. Poincaré. To appear, 2009.

[7] Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A 52(7) (2009) 1423-1445. MR 2520585 | Zbl pre05643454

[8] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108(1) (2003) 27-62. MR 2008600 | Zbl 1075.60556

[9] E. De Giorgi. Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957) 25-43. MR 93649 | Zbl 0084.31901

[10] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley, New York, 1986. MR 838085 | Zbl 0592.60049

[11] M. Fukushima, Y. Ōshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. MR 1303354 | Zbl 0838.31001

[12] W. Hoh. The martingale problem for a class of pseudo-differential operators. Math. Ann. 300(1) (1994) 121-147. MR 1289834 | Zbl 0805.47045

[13] W. Hoh. A symbolic calculus for pseudo-differential operators generating Feller semigroups. Osaka J. Math. 35(4) (1998) 789-820. MR 1659620 | Zbl 0922.47045

[14] R. Husseini and M. Kassmann. Markov chain approximations for symmetric jump processes. Potential Anal. 27(4) (2007) 353-380. MR 2353972 | Zbl 1128.60071

[15] N. Jacob. Feller semigroups, Dirichlet forms, and pseudodifferential operators. Forum Math. 4(5) (1992) 433-446. MR 1176881 | Zbl 0759.60078

[16] N. Jacob. A class of Feller semigroups generated by pseudo-differential operators. Math. Z. 215(1) (1994) 151-166. MR 1254818 | Zbl 0795.35154

[17] N. Jacob. Pseudo Differential Operators and Markov Processes. Vol. III. Imperial College Press, London, 2005. MR 2158336 | Zbl 1076.60003

[18] M. Kassmann. A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differential Equations 34(1) (2009) 1-21. MR 2448308 | Zbl 1158.35019

[19] T. Komatsu. Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms. Osaka J. Math. 25(3) (1988) 697-728. MR 969027 | Zbl 0726.35055

[20] T. Komatsu. Uniform estimates for fundamental solutions associated with non-local Dirichlet forms. Osaka J. Math. 32(4) (1995) 833-860. MR 1380729 | Zbl 0867.35123

[21] N. V. Krylov and M. V. Safonov. An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245(1) (1979) 18-20. MR 525227 | Zbl 0459.60067

[22] E. M. Landis. Second Order Equations of Elliptic and Parabolic Type. Amer. Math. Soc., Providence, RI, 1998. MR 1487894 | Zbl 0895.35001

[23] J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958) 931-954. MR 100158 | Zbl 0096.06902

[24] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. MR 1739520 | Zbl 0973.60001

[25] L. Silvestre. Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3) (2006) 1155-1174. MR 2244602 | Zbl 1101.45004

[26] R. Schilling and T. Uemura. Dirichlet forms generated by pseudo differential operators: On the Feller property of the associated stochastic process. Tohoku Math. J. 59 (2007) 401-422. MR 2365348 | Zbl 1141.31006

[27] R. Song and Z. Vondraček. Harnack inequality for some classes of Markov processes. Math. Z. 246(1, 2) (2004) 177-202. MR 2031452 | Zbl 1052.60064