In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the energy
Cet article est consacré à l’étude du théorème central limite, des déviations modérées et des lois du logarithme itéré pour l’énergie
Keywords: charged polymer, self-intersection local time, central limit theorem, moderate deviation, laws of the iterated logarithm
@article{AIHPB_2008__44_4_638_0,
author = {Chen, Xia},
title = {Limit laws for the energy of a charged polymer},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {638--672},
year = {2008},
publisher = {Gauthier-Villars},
volume = {44},
number = {4},
doi = {10.1214/07-AIHP120},
mrnumber = {2446292},
zbl = {1178.60024},
language = {en},
url = {https://www.numdam.org/articles/10.1214/07-AIHP120/}
}
TY - JOUR AU - Chen, Xia TI - Limit laws for the energy of a charged polymer JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 638 EP - 672 VL - 44 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP120/ DO - 10.1214/07-AIHP120 LA - en ID - AIHPB_2008__44_4_638_0 ER -
Chen, Xia. Limit laws for the energy of a charged polymer. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 638-672. doi: 10.1214/07-AIHP120
[1] and . Self-intersection local times for random walk, and random walk in random scenery in dimension d≥5. Preprint, 2005. Available at http://arxiv.org/math.PR/0509721arXiv:math.PR/0509721. | MR
[2] . Large deviation estimates for self-intersection local times for simple random walk in ℤ3. Probab. Theory Related Fields. To appear. | Zbl | MR
[3] , and . Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Electron. J. Probab. 11 (2006) 993-1030. | Zbl | MR | EuDML
[4] and . A model of continuous polymers with random charges. J. Math. Phys. 38 (1997) 5143-5152. | Zbl | MR
[5] . On the law of the iterated logarithm for local times of recurrent random walks. In High Dimensional Probability II (Seattle, WA, 1999) 249-259, 2000. | Zbl | MR
[6] . Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32 (2004) 3248-3300. | Zbl | MR
[7] . Moderate deviations and law of the iterated logarithm for intersections of the range of random walks. Ann. Probab. 33 (2005) 1014-1059. | Zbl | MR
[8] and . Large and moderate deviations for intersection local times. Probab. Theory Related Fields 128 (2004) 213-254. | Zbl | MR
[9] and . Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | Zbl | MR
[10] , and . A model of directed walks with random self interactions. Europhys. Lett. 18 (1992) 361-366.
[11] and . Low-temperature properties of directed walks with random self-interactions. J. Phys. A 27 (1994) 5485-5493. | Zbl | MR
[12] and . A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915-944. | Zbl | MR
[13] and . The range of transient random walk. J. Anal. Math. 24 (1971) 369-393. | Zbl | MR
[14] and . Further limit theorem for the range of random walk. J. Anal. Math. 27 (1974) 94-117. | Zbl | MR
[15] and . Asymptotic behavior of the local time of a recurrent random walk. Ann. Probab. 11 (1984) 64-85. | Zbl | MR
[16] and . Polymers with self-interactions. Europhys. Lett. 14 (1991) 421-426.
[17] and . The range of stable random walks. Ann. Probab. 19 (1991) 650-705. | Zbl | MR
[18] and . Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267-1279. | Zbl | MR
[19] . Random Walks in Random and Non-Random Environments. World Scientific, London, 1990. | Zbl
[20] . Random walks and intersection local time. Ann. Probab. 18 (1990) 959-977. | Zbl | MR
[21] . Principles of Random Walk. Van Nostrand, Princeton, New Jersey, 1964. | Zbl | MR
Cité par Sources :





