Let be the fractional brownian motion with parameter . When , we consider diffusion equations of the type
Soit le mouvement Brownien fractionnaire de paramètre . Lorsque , nous considérons des équations de diffusion de la forme
Keywords: central limit theorem, estimation, fractional brownian motion, gaussian processes, Hermite polynomials
@article{AIHPB_2008__44_2_191_0,
author = {Berzin, Corinne and Le\'on, Jos\'e R.},
title = {Estimation in models driven by fractional brownian motion},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {191--213},
year = {2008},
publisher = {Gauthier-Villars},
volume = {44},
number = {2},
doi = {10.1214/07-AIHP105},
mrnumber = {2446320},
language = {en},
url = {https://www.numdam.org/articles/10.1214/07-AIHP105/}
}
TY - JOUR AU - Berzin, Corinne AU - León, José R. TI - Estimation in models driven by fractional brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 191 EP - 213 VL - 44 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP105/ DO - 10.1214/07-AIHP105 LA - en ID - AIHPB_2008__44_2_191_0 ER -
%0 Journal Article %A Berzin, Corinne %A León, José R. %T Estimation in models driven by fractional brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 191-213 %V 44 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP105/ %R 10.1214/07-AIHP105 %G en %F AIHPB_2008__44_2_191_0
Berzin, Corinne; León, José R. Estimation in models driven by fractional brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 191-213. doi: 10.1214/07-AIHP105
[1] and . Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257-270. | Zbl | MR
[2] and . Convergence in fractional models and applications. Electron. J. Probab. 10 (2005) 326-370. | Zbl | MR
[3] and . Estimating the Hurst parameter. Stat. Inference Stoch. Process. 10 (2007) 49-73. | Zbl | MR
[4] , and . Stock price returns and the Joseph effect: A fractional version of the Black-Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993) 327-351. Switzerland. | Zbl | MR
[5] and . Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177-214. | Zbl | MR
[6] and . Stochastic volatility and fractional Brownian motion. Stochastic Process. Appl. 113 (2004) 143-172. | Zbl | MR
[7] and . Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 (1999) 1021-1028. | Zbl | MR
[8] . Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | Zbl | MR
[9] . Differential equations driven by rough signals, I: An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994) 451-464. | Zbl | MR
[10] and . Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | Zbl | MR
[11] and . Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2001) 55-81. | Zbl | MR
Cité par Sources :






