Étant donné un ensemble fini ou dénombrable de nombres réel , , nous trouvons l'ensemble des solutions de l'équation fonctionelle
Given any finite or countable collection of real numbers , , we find all solutions to the stochastic fixed point equation
Classification : 60E05, 60J80
Mots clés : stochastic fixed point equation, weighted minima and maxima, weighted branching process, harmonic analysis on trees, Choquet-Deny theorem, Weibull distributions
@article{AIHPB_2008__44_1_89_0, author = {Alsmeyer, Gerold and R\"osler, Uwe}, title = {A stochastic fixed point equation for weighted minima and maxima}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {89--103}, publisher = {Gauthier-Villars}, volume = {44}, number = {1}, year = {2008}, doi = {10.1214/07-AIHP104}, zbl = {1176.60006}, mrnumber = {2451572}, language = {en}, url = {www.numdam.org/item/AIHPB_2008__44_1_89_0/} }
Alsmeyer, Gerold; Rösler, Uwe. A stochastic fixed point equation for weighted minima and maxima. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 1, pp. 89-103. doi : 10.1214/07-AIHP104. http://www.numdam.org/item/AIHPB_2008__44_1_89_0/
A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 (2005) 1047-1110. | MR 2134098 | Zbl 1105.60012
and .A limit law for the root value of minimax trees. Electron. Comm. Probab. 10 (2005) 273-281. | MR 2198602 | Zbl 1112.60011
, and .A stochastic maximin fixed point equation related to game tree evaluation. J. Appl. Probab. 44 (2007) 586-606. | MR 2355578 | Zbl 1136.60009
and .A stochastic fixed point equation related to weighted branching with deterministic weights. Electron. J. Probab. 11 (2006) 27-56. | MR 2199054 | Zbl 1110.60080
and .Sur l'equation de convolution μ=μ*σ. C. R. Acad. Sci. Paris 250 (1960) 799-801. | MR 119041 | Zbl 0093.12802
and .Stochastic fixed points for the maximum. In Mathematics and Computer Science III. M. Drmota, P. Flajolet, D. Gardy and B. Gittenberger (Eds) 325-338. Birkhäuser, Basel, 2004. | MR 2090523 | Zbl 1067.60087
and .Analysis of algorithms by the contraction method: additive and max-recursive sequences. In Interacting Stochastic Systems. J. D. Deuschel and A. Greven (Eds) 435-450. Springer, Heidelberg, 2005. | MR 2118586 | Zbl 1090.68124
and .