Given any finite or countable collection of real numbers , , we find all solutions to the stochastic fixed point equation
Étant donné un ensemble fini ou dénombrable de nombres réel , , nous trouvons l'ensemble des solutions de l'équation fonctionelle
Keywords: stochastic fixed point equation, weighted minima and maxima, weighted branching process, harmonic analysis on trees, Choquet-Deny theorem, Weibull distributions
@article{AIHPB_2008__44_1_89_0,
author = {Alsmeyer, Gerold and R\"osler, Uwe},
title = {A stochastic fixed point equation for weighted minima and maxima},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {89--103},
year = {2008},
publisher = {Gauthier-Villars},
volume = {44},
number = {1},
doi = {10.1214/07-AIHP104},
mrnumber = {2451572},
zbl = {1176.60006},
language = {en},
url = {https://www.numdam.org/articles/10.1214/07-AIHP104/}
}
TY - JOUR AU - Alsmeyer, Gerold AU - Rösler, Uwe TI - A stochastic fixed point equation for weighted minima and maxima JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 89 EP - 103 VL - 44 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP104/ DO - 10.1214/07-AIHP104 LA - en ID - AIHPB_2008__44_1_89_0 ER -
%0 Journal Article %A Alsmeyer, Gerold %A Rösler, Uwe %T A stochastic fixed point equation for weighted minima and maxima %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 89-103 %V 44 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP104/ %R 10.1214/07-AIHP104 %G en %F AIHPB_2008__44_1_89_0
Alsmeyer, Gerold; Rösler, Uwe. A stochastic fixed point equation for weighted minima and maxima. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 1, pp. 89-103. doi: 10.1214/07-AIHP104
and . A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 (2005) 1047-1110. | Zbl | MR
, and . A limit law for the root value of minimax trees. Electron. Comm. Probab. 10 (2005) 273-281. | Zbl | MR
and . A stochastic maximin fixed point equation related to game tree evaluation. J. Appl. Probab. 44 (2007) 586-606. | Zbl | MR
and . A stochastic fixed point equation related to weighted branching with deterministic weights. Electron. J. Probab. 11 (2006) 27-56. | Zbl | MR
and . Sur l'equation de convolution μ=μ*σ. C. R. Acad. Sci. Paris 250 (1960) 799-801. | Zbl | MR
and . Stochastic fixed points for the maximum. In Mathematics and Computer Science III. M. Drmota, P. Flajolet, D. Gardy and B. Gittenberger (Eds) 325-338. Birkhäuser, Basel, 2004. | Zbl | MR
and . Analysis of algorithms by the contraction method: additive and max-recursive sequences. In Interacting Stochastic Systems. J. D. Deuschel and A. Greven (Eds) 435-450. Springer, Heidelberg, 2005. | Zbl | MR
Cité par Sources :






