Aging for interacting diffusion processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, p. 461-480
@article{AIHPB_2007__43_4_461_0,
     author = {Dembo, Amir and Deuschel, Jean-Dominique},
     title = {Aging for interacting diffusion processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {43},
     number = {4},
     year = {2007},
     pages = {461-480},
     doi = {10.1016/j.anihpb.2006.07.001},
     zbl = {1117.60088},
     mrnumber = {2329512},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2007__43_4_461_0}
}
Dembo, Amir; Deuschel, Jean-Dominique. Aging for interacting diffusion processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, pp. 461-480. doi : 10.1016/j.anihpb.2006.07.001. http://www.numdam.org/item/AIHPB_2007__43_4_461_0/

[1] G. Ben Arous, Aging and spin-glass dynamics, in: Proceedings of the International Congress of Mathematicians, vol. III, Higher Ed. Press, Beijing, 2002, pp. 3-14. | MR 1957514 | Zbl 1009.82017

[2] J.P. Bouchaud, L.F. Cugliandolo, J. Kurchan, M. Mezard, Out of equilibrium dynamics in spin-glasses and other glassy systems, in: Young A.P. (Ed.), Spin Glass Dynamics and Random Fields, World Scientific, 1997.

[3] R. Carmona, S.S. Molchanov, Parabolic Anderson problems and intermittency, Mem. Amer. Math. Soc. 108 (1994). | MR 1185878 | Zbl 0925.35074

[4] L.F. Cugliandolo, Dynamics of glassy systems, in: Lecture Notes in Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter, Les Houches, 2002, Session 77.

[5] L.F. Cugliandolo, J. Kurchan, G. Parisi, Off equilibrium dynamics and aging in unfrustrated systems, J. Phys. I (France) 4 (1994) 1691.

[6] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1) (1999) 181-232. | MR 1681641 | Zbl 0922.60060

[7] J.-D. Deuschel, Algebraic L 2 -decay of attractive critical processes on the lattice, Ann. Probab. 22 (1994) 264-283. | MR 1258877 | Zbl 0811.60089

[8] J.-D. Deuschel, The random walk representation for interacting diffusion processes, in: Deuschel J.-D., Greven A. (Eds.), Interacting Stochastic Systems, Springer, Berlin, 2005, pp. 378-391. | MR 2118583 | Zbl 1111.82049

[9] T. Delmotte, J.-D. Deuschel, On estimating the derivatives of symmetric diffusions in stationary environment with applications to ∇φ interface models, Probab. Theory Related Fields 133 (2005) 358-390. | Zbl 1083.60082

[10] J.-D. Deuschel, T. Nishikawa, The dynamic of entropic repulsion, Stochastic Process. Appl. (2006), in press. | MR 2320950 | Zbl 1112.60077

[11] J.-D. Deuschel, L. Zambotti, Bismut-Elworthy's formula and random walk representation for SDEs with reflection, Stochastic Process. Appl. 115 (2005) 907-925. | Zbl 1071.60044

[12] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980.

[13] J. Fröhlich, C.-E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems, Comm. Math. Phys. 81 (1981) 277-298. | MR 632763

[14] T. Funaki, Stochastic interface models, in: Ecole d'été de probabilités de Saint Flour XXXIII - 2003, Lecture Notes in Mathematics, vol. 1869, Springer-Verlag, Berlin, 2005, pp. 105-274. | Zbl 1119.60081

[15] T. Funaki, H. Spohn, Motion by mean curvature from the Ginzburg-Landau ∇φ interface models, Comm. Math. Phys. 185 (1997) 1-36. | Zbl 0884.58098

[16] G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuations for ∇φ interface model, Ann. Probab. 29 (2001) 1138-1172. | Zbl 1017.60100

[17] A. Greven, Renormalization and universality for multiple population models, in: Deuschel J.-D., Greven A. (Eds.), Interacting Stochastic Systems, Springer, Berlin, 2005, pp. 209-267. | MR 2118576 | Zbl 1078.92065

[18] B. Helffer, J. Sjöstrand, On the correlation for Kac-like models in the convex case, J. Stat. Phys. 74 (1/2) (1994) 349-409. | MR 1257821 | Zbl 0946.35508

[19] M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond, World Scientific Lecture Notes in Physics, 1987. | MR 1026102 | Zbl 0992.82500

[20] C.M. Newman, A general central limit theorem for FKG systems, Comm. Math. Phys. 91 (1983) 75-80. | MR 719811 | Zbl 0528.60024

[21] T. Nishikawa, Hydrodynamic limit for the Ginsburg-Landau ∇φ interface model with a conservation law, J. Math. Sci. Univ. Tokyo 9 (2002) 481-519. | Zbl 1012.60089

[22] L.C.E. Struick, Physical Aging in Amorphous Polymers and other Materials, Elsevier, London, 1976.