Large deviation principle of occupation measure for stochastic Burgers equation
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, p. 441-459
@article{AIHPB_2007__43_4_441_0,
     author = {Gourcy, Mathieu},
     title = {Large deviation principle of occupation measure for stochastic Burgers equation},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {43},
     number = {4},
     year = {2007},
     pages = {441-459},
     doi = {10.1016/j.anihpb.2006.07.003},
     zbl = {1123.60016},
     mrnumber = {2329511},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2007__43_4_441_0}
}
Gourcy, Mathieu. Large deviation principle of occupation measure for stochastic Burgers equation. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, pp. 441-459. doi : 10.1016/j.anihpb.2006.07.003. http://www.numdam.org/item/AIHPB_2007__43_4_441_0/

[1] C. Cardon-Weber, Large deviations for a Burgers type SPDE, Stochastic Process. Appl. 84 (1999) 53-70. | MR 1720097 | Zbl 0996.60073

[2] G. Da Prato, A. Debussche, Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton Jacobi equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 9 (1998) 267-277. | MR 1722786 | Zbl 0931.37036

[3] G. Da Prato, A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl. (IV) CLXXVIII (2000) 143-174. | MR 1849384 | Zbl 1016.49024

[4] G. Da Prato, D. Gatarek, Stochastic Burgers equation with correlated noise, Stoch. Stoch. Rep. 52 (1995) 29-41. | MR 1380259 | Zbl 0853.35138

[5] G. Da Prato, A. Debussche, R. Temam, Stochastic Burgers equation, Nonlinear Anal. 1 (1994) 389-402. | MR 1300149 | Zbl 0824.35112

[6] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. | MR 1207136 | Zbl 0761.60052

[7] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996. | MR 1417491 | Zbl 0849.60052

[8] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Springer-Verlag, 1998. | MR 1619036 | Zbl 0896.60013

[9] A. Dermoune, Around the stochastic Burgers equation, Stoch. Anal. Appl. 15 (2) (1997) 295-311. | MR 1454089 | Zbl 0885.60055

[10] J.D. Deuschel, D.W. Stroock, Large Deviations, Pure Appl. Math., vol. 137, Academic Press, San Diego, 1989. | MR 997938 | Zbl 0705.60029

[11] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I-IV, Comm. Pure Appl. Math. 28 (1975) 1-47, 279-301 (1975); 29, 389-461 (1976); 36, 183-212 (1983). | Zbl 0323.60069

[12] F. Flandoli, B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbation, Comm. Math. Phys. 171 (1995) 119-141. | Zbl 0845.35080

[13] B. Goldys, B. Maslowski, Exponential ergodicity for stochastic burgers and 2D Navier-Stokes equation, J. Funct. Anal. 226 (1) (2005) 230-255. | Zbl 1078.60049

[14] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993. | MR 1287609 | Zbl 0925.60001

[15] E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. thesis. Université Paris XI, 1975. | Zbl 0236.60039

[16] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, third ed., Springer-Verlag, 1999. | MR 1725357 | Zbl 0917.60006

[17] B.L. Rozovski, Stochastic Evolution Systems: Linear Theory and Application to Non Linear Filtering, Kluver Academic, 1990. | Zbl 0724.60070

[18] E. Weinan, K. Khanin, A. Mazel, Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. of Math. 151 (2000) 877-960. | MR 1779561 | Zbl 0972.35196

[19] L. Wu, Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal. 172 (2000) 301-376. | MR 1753178 | Zbl 0957.60032

[20] L. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Proc. Appl. 91 (2001) 205-238. | MR 1807683 | Zbl 1047.60059

[21] L. Wu, Essential spectral radius for Markov semigroups (I): discrete time case, Probab. Theory Related Fields 128 (2004) 255-321. | MR 2031227 | Zbl 1056.60068