@article{AIHPB_2007__43_4_399_0,
author = {Agrachev, A. and Kuksin, S. and Sarychev, A. and Shirikyan, A.},
title = {On finite-dimensional projections of distributions for solutions of randomly forced {2D} {Navier-Stokes} equations},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {399--415},
year = {2007},
publisher = {Elsevier},
volume = {43},
number = {4},
doi = {10.1016/j.anihpb.2006.06.001},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/}
}
TY - JOUR AU - Agrachev, A. AU - Kuksin, S. AU - Sarychev, A. AU - Shirikyan, A. TI - On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 399 EP - 415 VL - 43 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/ DO - 10.1016/j.anihpb.2006.06.001 LA - en ID - AIHPB_2007__43_4_399_0 ER -
%0 Journal Article %A Agrachev, A. %A Kuksin, S. %A Sarychev, A. %A Shirikyan, A. %T On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 399-415 %V 43 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/ %R 10.1016/j.anihpb.2006.06.001 %G en %F AIHPB_2007__43_4_399_0
Agrachev, A.; Kuksin, S.; Sarychev, A.; Shirikyan, A. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 4, pp. 399-415. doi: 10.1016/j.anihpb.2006.06.001
[1] , , Navier-Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (1) (2005) 108-152. | Zbl
[2] , , Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing, Comm. Math. Phys. 265 (2006) 673-697. | Zbl
[3] , Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. | Zbl | MR
[4] , , Malliavin calculus for white noise driven parabolic SPDEs, Potential Anal. 9 (1) (1998) 27-64. | Zbl | MR
[5] , , Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988. | Zbl
[6] , , The stochastic wave equation in two spatial dimensions, Ann. Probab. 26 (1) (1998) 187-212. | Zbl | MR
[7] , Zero one laws for probability measures on locally convex spaces, Math. Ann. 243 (2) (1979) 95-102. | Zbl | MR | EuDML
[8] , , Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys. 219 (2001) 523-565. | Zbl | MR
[9] , An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, New York, 1971. | Zbl | MR
[10] , Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA 1 (1994) 403-426. | Zbl
[11] , , The Theory of Stochastic Processes. I, Springer-Verlag, Berlin, 1980. | Zbl | MR
[12] , Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
[13] , Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. | Zbl | MR
[14] , Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.) 117 (159) (1982) 359-378, 431. | Zbl | MR
[15] , , , The stochastic Burgers equation: finite moments and smoothness of the density, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (3) (2000) 363-385. | Zbl | MR
[16] , , Malliavin calculus for the stochastic 2D Navier-Stokes equation, Comm. Pure Appl. Math. 59 (12) (2006) 1742-1790. | Zbl
[17] , The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 1995. | Zbl | MR
[18] , Stochastic calculus of variations for stochastic partial differential equations, J. Funct. Anal. 79 (2) (1988) 288-331. | Zbl | MR
[19] , Lectures on Differential Geometry, Chelsea Publishing Co., New York, 1983. | Zbl | MR
[20] , Navier-Stokes Equations, North-Holland, Amsterdam, 1979. | Zbl
[21] , , Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. | Zbl
Cité par Sources :






