@article{AIHPB_2006__42_4_417_0,
author = {Odasso, Cyril},
title = {Ergodicity for the stochastic complex {Ginzburg-Landau} equations},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {417--454},
year = {2006},
publisher = {Elsevier},
volume = {42},
number = {4},
doi = {10.1016/j.anihpb.2005.06.002},
zbl = {1104.35078},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/}
}
TY - JOUR AU - Odasso, Cyril TI - Ergodicity for the stochastic complex Ginzburg-Landau equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 417 EP - 454 VL - 42 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/ DO - 10.1016/j.anihpb.2005.06.002 LA - en ID - AIHPB_2006__42_4_417_0 ER -
%0 Journal Article %A Odasso, Cyril %T Ergodicity for the stochastic complex Ginzburg-Landau equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 417-454 %V 42 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/ %R 10.1016/j.anihpb.2005.06.002 %G en %F AIHPB_2006__42_4_417_0
Odasso, Cyril. Ergodicity for the stochastic complex Ginzburg-Landau equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 4, pp. 417-454. doi: 10.1016/j.anihpb.2005.06.002
[1] , Invariant measure for the stochastic Ginzburg Landau equation, NoDEA Nonlinear Differential Equations Appl. 11 (1) (2004) 29-52. | Zbl | MR
[2] , , Inviscid limits of the Complex Ginzburg-Landau equation, Comm. Math. Phys. 214 (2000) 201-226. | Zbl | MR
[3] , , , Exponential mixing for the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys. 230 (1) (2002) 87-132. | Zbl | MR
[4] , , Stochastic equations in infinite dimensions, in: Encyclopedia Math. Appl., Cambridge University Press, 1992. | Zbl | MR
[5] , , A stochastic non-linear Schrödinger equation with multiplicative noise, Comm. Math. Phys. 205 (1999) 161-181. | Zbl | MR
[6] , , The stochastic non-linear Schrödinger equation in , Stochastic Anal. Appl. 21 (1) (2003) 97-126. | Zbl | MR
[7] , , , Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys. 224 (2001) 83-106. | Zbl | MR
[8] , , On the theorie of superconductivity, Zh. Eksp. Fiz. 20 (1950) 1064, English transl., in: (Ed.), Men of Physics: L.D. Landau, vol. I, Pergamon Press, New York, 1965, pp. 546-568.
[9] , Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields 124 (3) (2002) 345-380. | Zbl | MR
[10] , , Universal decay of vortex density in two dimensions, Physica A 195 (1993) 448-456. | Zbl
[11] , On exponential convergence to a stationary measure for nonlinear PDEs, in: The M.I. Viishik Moscow PDE seminar, Amer. Math. Soc. Transl. Ser. (2), vol. 206, Amer. Math. Soc., 2002. | MR
[12] , , Stochastic dissipative PDE's and Gibbs measures, Comm. Math. Phys. 213 (2000) 291-330. | Zbl | MR
[13] , , A coupling approach to randomly forced PDE's I, Comm. Math. Phys. 221 (2001) 351-366. | Zbl | MR
[14] , , , A coupling approach to randomly forced PDE's II, Comm. Math. Phys. 230 (1) (2002) 81-85. | Zbl | MR
[15] , , Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl. 1 (2002) 567-602. | Zbl | MR
[16] , , Randomly forced CGL equation: Stationary measure and the inviscid limit, J. Phys. A 37 (12) (2004) 3805-3822. | Zbl | MR
[17] , Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys. 230 (2002) 421-462. | Zbl | MR
[18] , On recent progress for the stochastic Navier-Stokes equations, in: Journées Équations aux Dérivées Partielles, Exp. No XI, vol. 52, Univ. Nantes, Nantes, 2003. | Zbl | MR | Numdam
[19] , , Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969) 279-303. | Zbl
[20] , , Review of the finite bandwidth concept, in: (Ed.), Proceedings of the Internat. Union of Theor. and Appl. Math., Springer, Berlin, 1971, pp. 284-289. | Zbl
[21] C. Odasso, Propriétés ergodiques de l'équation de Ginzburg-Landau complexe bruitée, Mémoire de DEA, 2003.
[22] , Exponential mixing for 2D Navier-Stokes equation perturbed by an unbounded noise, J. Math. Fluid Mech. 6 (2) (2004) 169-193. | Zbl | MR
Cité par Sources :





