Analysis of a Bose-Einstein Markov chain
Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 3, pp. 409-418.
@article{AIHPB_2005__41_3_409_0,
     author = {Diaconis, Persi},
     title = {Analysis of a Bose-Einstein Markov chain},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {409--418},
     publisher = {Elsevier},
     volume = {41},
     number = {3},
     year = {2005},
     doi = {10.1016/j.anihpb.2004.09.007},
     zbl = {02191861},
     language = {en},
     url = {www.numdam.org/item/AIHPB_2005__41_3_409_0/}
}
Diaconis, Persi. Analysis of a Bose-Einstein Markov chain. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 3, pp. 409-418. doi : 10.1016/j.anihpb.2004.09.007. http://www.numdam.org/item/AIHPB_2005__41_3_409_0/

[1] D. Aldous, J. Fill, Reversible Markov chains and random walks and graphs, , 2003.

[2] J. Besag, P. Green, Spatial statistics and Bayesian computation, J. Roy. Statist. Soc. Ser. B (1993) 25-37. | MR 1210422 | Zbl 0800.62572

[3] P. Billingsley, On the distribution of large prime divisors, Period. Math. Hungar 2 (1972) 283-289. | MR 335462 | Zbl 0242.10033

[4] C. Borgs, J. Chayes, A. Frieze, J. Kim, P. Tetali, E. Vigoda, V. Vu, Torpid mixing of some Monte Carlo Markov chains in statistical physics, in: 40th Symp. Foundations of Computer Science, IEEE Comput. Soc., Los Alamaitos, CA, 1999, pp. 218-229. | MR 1917562

[5] J. Brocas, M. Gielen, R. Willem, The Permutational Approach to Dynamical Sterochemistry, McGraw-Hill, New York, 1983.

[6] N.G. De Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics, Wiley, New York, 1968. | Zbl 0144.00601

[7] R. Chen, A. Zame, Another arc sine law, Sankhyā 43 (1981) 371-373. | MR 665878 | Zbl 0526.62015

[8] C. Dellacherie, P.A. Meyer, Probabilités et Potentiel, Herman, Paris, 1975. | MR 488194 | Zbl 0323.60039

[9] C. Dellacherie, P.A. Meyer, Probabilités et Potentiel : Theorie des Martingales, Herman, Paris, 1980. | MR 566768

[10] C. Dellacherie, P.A. Meyer, Probabilité et Potentiel : Theorie Discrete du Potentiel, Herman, Paris, 1983. | MR 727641

[11] W. Feller, An Introduction to Probability and its Applications, vol. 1, Wiley, New York, 1968. | MR 228020 | Zbl 0039.13201

[12] L. Goldberg, Automating Polya theory: the computational complexity of the cycle index polynomial, Info and Computation 105 (1993) 268-288. | MR 1226345 | Zbl 0785.20004

[13] L. Goldberg, M. Jerrum, The Burnside process mixes slowly, Combinatorics, Probability, and Computing 11 (2002) 21-34. | MR 1888180 | Zbl 1008.68085

[14] V. Goncharov, On the distribution of the cycles in permutations, Dokl. Akad. Nauk SSSR 35 (1942) 229-310.

[15] V. Gore, M. Jerrum, The Swendsen-Wang process does not always mix rapidly, in: Proc. 29th Acm. Symp. Th. of Comput., 1997, pp. 674-681. | MR 1753371 | Zbl 0963.68216

[16] L. Hoist, Two conditioned limit theorems with applications, Ann. Statist. 7 (1979) 551-557. | MR 527490 | Zbl 0406.62008

[17] M. Huber, Perfect sampling using bounding chains, Ann. Appl. Probab. 14 (2004) 734-753. | MR 2052900 | Zbl 1052.60057

[18] M. Jerrum, Uniform sampling modulo a group of symmetries using Markov chain simulation, in: DIMACS Series Discrete Math., vol. 10, 1993, pp. 37-47. | MR 1235566 | Zbl 0814.68077

[19] M. Jerrum, Computational Polya-theory in surveys in combinatorics, in: London Math. Soc. Lecture Notes, vol. 218, Cambridge University Press, Cambridge, 1995, pp. 103-108. | MR 1358633 | Zbl 0833.20005

[20] J. Kemeny, L. Snell, Finite Markov Chains, Van Nostrand, New York, 1960. | MR 115196 | Zbl 0089.13704

[21] A. Kerber, Applied Finite Group Actions, Springer, Berlin, 1999. | MR 1716962 | Zbl 0951.05001

[22] S. Kerov, Transition probabilities for continual Young diagrams and Markov moment problems, Func. Anal. Appl. 27 (1993) 104-117. | MR 1251166 | Zbl 0808.05098

[23] J. Liu, Monte Carlo Techniques in Scientific Computing, Springer, New York, 2001. | MR 1842342

[24] P.A. Meyer, Probability and Potentials, Blaisdell, Walthan, MA, 1966. | MR 205288 | Zbl 0138.10401

[25] R. Neale, Slice sampling (with discussion), Ann. Statist. 31 (2003) 705-767. | MR 1994729 | Zbl 1051.65007

[26] G. Polya, R. Read, Combinatorial Enumeration of Groups Graphs and Chemical Compounds, Springer, New York, 1987. | MR 884155

[27] L. Shepp, S. Lloyd, Ordered cycle lengths in random permutations, Trans. Amer. Math. Soc. 121 (1966) 340-357. | MR 195117 | Zbl 0156.18705

[28] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999. | MR 1676282 | Zbl 0928.05001

[29] M. Tanner, W. Wong, The calculation of posterior distributions using data augmentation, J. Amer. Statist. Asoc. 82 (1987) 528-550. | MR 898357 | Zbl 0619.62029