@article{AIHPB_2003__39_6_943_0,
author = {Koltchinskii, Vladimir},
title = {Bounds on margin distributions in learning problems},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {943--978},
year = {2003},
publisher = {Elsevier},
volume = {39},
number = {6},
doi = {10.1016/S0246-0203(03)00023-2},
mrnumber = {2010392},
zbl = {1031.60017},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0246-0203(03)00023-2/}
}
TY - JOUR AU - Koltchinskii, Vladimir TI - Bounds on margin distributions in learning problems JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 943 EP - 978 VL - 39 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0246-0203(03)00023-2/ DO - 10.1016/S0246-0203(03)00023-2 LA - en ID - AIHPB_2003__39_6_943_0 ER -
%0 Journal Article %A Koltchinskii, Vladimir %T Bounds on margin distributions in learning problems %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 943-978 %V 39 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0246-0203(03)00023-2/ %R 10.1016/S0246-0203(03)00023-2 %G en %F AIHPB_2003__39_6_943_0
Koltchinskii, Vladimir. Bounds on margin distributions in learning problems. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 6, pp. 943-978. doi: 10.1016/S0246-0203(03)00023-2
[1] , , Neural Network Learning: Theoretical Foundations, Cambridge University Press, 1999. | Zbl | MR
[2] , The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Trans. Inform. Theory 44 (1998) 525-536. | Zbl | MR
[3] , , Support vector networks, Machine Learning 20 (1995) 273-297. | Zbl
[4] , , , A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. | Zbl | MR
[5] , Uniform Central Limit Theorems, Cambridge University Press, 1999. | Zbl | MR
[6] E. Giné, V. Koltchinskii, J. Wellner, Ratio limit theorems for empirical processes, Preprint, 2003. | MR
[7] , , , Data-dependent margin-based generalization bounds for classification, in: , (Eds.), Proc. of 14th Annual Conference on Computational Learning Theory, COLT2001, Lecture Notes in Artificial Intelligence, Springer, New York, 2001, pp. 368-384. | Zbl | MR
[8] , , Rademacher processes and bounding the risk of function learning, in: , , (Eds.), High Dimensional Probability II, Birkhäuser, Boston, 2000, pp. 444-459. | Zbl | MR
[9] , , Empirical margin distributions and bounding the generalization error of combined classifiers, Ann. Statist. 30 (2002) 1-50. | Zbl | MR
[10] , , , Some new bounds on the generalization error of combined classifiers, in: , , (Eds.), Proc. of NIPS'2000, Advances in Neural Information Processing Systems, 13, MIT Press, 2001, pp. 245-251, URL: , http://www.boosting.org/.
[11] , , , Further explanation of the effectiveness of voting methods: the game between margins and weights, in: , (Eds.), Proc. of 14th Annual Conference on Computational Learning Theory, COLT2001, Lecture Notes in Artif. Intell., Springer, New York, 2001, pp. 241-255. | Zbl | MR
[12] , , , Bounding the generalization error of convex combinations of classifiers: balancing the dimensionality and the margins, Ann. Appl. Probab. 13 (1) (2003) 213-252. | Zbl | MR
[13] , , Probability in Banach Spaces, Springer-Verlag, New York, 1991. | Zbl | MR
[14] , About the constants in Talagrand's concentration inequalities for empirical processes, Ann. Probab. 28 (2000) 863-885. | Zbl | MR
[15] , Some applications of concentration inequalities to statistics, Ann. Fac. Sci. Tolouse (IX) (2000) 245-303. | Zbl | MR | Numdam
[16] , , , , Boosting the margin: a new explanation of effectiveness of voting methods, Ann. Statist. 26 (1998) 1651-1687. | Zbl | MR
[17] , A new look at independence, Ann. Probab. 24 (1996) 1-34. | Zbl | MR
[18] , New concentration inequalities in product spaces, Invent. Math. 126 (1996) 505-563. | Zbl | MR
[19] A. Tsybakov, Optimal aggregation of classifiers in statistical learning, Preprint, 2002. | MR
[20] , , Weak Convergence and Empirical Processes. With Applications to Statistics, Springer-Verlag, New York, 1996. | Zbl | MR
[21] , Statistical Learning Theory, Wiley, New York, 1998. | Zbl | MR
Cité par Sources :






