Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps
Annales de l'I.H.P. Probabilités et statistiques, Volume 35 (1999) no. 6, pp. 765-791.
@article{AIHPB_1999__35_6_765_0,
     author = {Arnaudon, Marc and Li, Xue-Mei and Thalmaier, Anton},
     title = {Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {765--791},
     publisher = {Gauthier-Villars},
     volume = {35},
     number = {6},
     year = {1999},
     zbl = {0946.60030},
     mrnumber = {1725710},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1999__35_6_765_0/}
}
TY  - JOUR
AU  - Arnaudon, Marc
AU  - Li, Xue-Mei
AU  - Thalmaier, Anton
TI  - Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1999
DA  - 1999///
SP  - 765
EP  - 791
VL  - 35
IS  - 6
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPB_1999__35_6_765_0/
UR  - https://zbmath.org/?q=an%3A0946.60030
UR  - https://www.ams.org/mathscinet-getitem?mr=1725710
LA  - en
ID  - AIHPB_1999__35_6_765_0
ER  - 
%0 Journal Article
%A Arnaudon, Marc
%A Li, Xue-Mei
%A Thalmaier, Anton
%T Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1999
%P 765-791
%V 35
%N 6
%I Gauthier-Villars
%G en
%F AIHPB_1999__35_6_765_0
Arnaudon, Marc; Li, Xue-Mei; Thalmaier, Anton. Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps. Annales de l'I.H.P. Probabilités et statistiques, Volume 35 (1999) no. 6, pp. 765-791. http://www.numdam.org/item/AIHPB_1999__35_6_765_0/

[1] M. Arnaudon, Differentiable and analytic families of continuous martingales in manifolds with connection, Probab. Theory Related Fields 108 (1997) 219-257. | MR | Zbl

[2] M. Arnaudon and A. Thalmaier, Complete lifts of connections and stochastic Jacobi fields, J. Math. Pures Appl. 77 (1998) 283-315. | MR | Zbl

[3] R.W.R. Darling, Martingales on noncompact manifolds: maximal inequalities and prescribed limits, Annales de l'Institut Henri Poincaré 32 (4) (1996) 431-454. | Numdam | MR | Zbl

[4] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988) 385-524. | MR | Zbl

[5] K.D. Elworthy, Harmonic maps and the non-linear heat equation, Unpublished notes, Warwick, 1993.

[6] K.D. Elworthy and X.-M. Li, A class of integration by parts formulae in stochastic analysis I, in: S. Watanabe, Ed., Itô's stochastic Calculus and Probability Theory (dedicated to K. Itô on the occasion of his eightieth birthday), Springer, 1996, 15-30. | MR | Zbl

[7] M. Émery, Stochastic Calculus in Manifolds, Springer, 1989. | MR | Zbl

[8] W. Kendall, Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence, Proc. London Math. Soc. (3) 61 (1990) 371-406. | MR | Zbl

[9] W. Kendall, Probability, convexity, and harmonic maps II: Smoothness via probabilistic gradient inequalities, J. Funct. Anal. 126 (1994) 228-257. | MR | Zbl

[10] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990. | MR | Zbl

[11] J. Picard, Martingales on Riemannian manifolds with prescribed limits, J. Funct. Anal. 99 (1991) 223-261. | MR | Zbl

[12] J. Picard, Barycentres et martingales sur une variété, Annales de l'Institut Henri Poincaré 30 (1994) 647-702. | EuDML | Numdam | MR | Zbl

[13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 2nd ed., Springer, 1994. | MR | Zbl

[14] A. Thalmaier and F.-Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155 (1998) 109-124. | MR | Zbl

[15] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973. | MR | Zbl