Benchaou, Mohammed; Martinez, André
Estimations exponentielles en théorie de la diffusion pour des opérateurs de Schrödinger matriciels
Annales de l'I.H.P. Physique théorique, Tome 71 (1999) no. 6 , p. 561-594
Zbl 1024.81051 | MR 1732143
URL stable : http://www.numdam.org/item?id=AIHPA_1999__71_6_561_0

Bibliographie

[1] M. Benchaou, Estimations de diffusion pour un opérateur de Klein-Gordon dépendant du temps, Bull. Soc. Math. de France 126 (1998) 273-294. Numdam | MR 1675973 | Zbl 0919.35099

[2] C. Gérard and A. Martinez, Principe d'absorption limite pour des opérateurs de Schrödinger à longue porté, C. R. Acad. Sci. Paris 906 I (1988) 121-123. MR 929103 | Zbl 0672.35013

[3] B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Lecture Notes in Physics, vol. 345, Springer, Berlin, 1989, 118-197. MR 1037319 | Zbl 0699.35189

[4] H. Isozaki, Decay rates of scattering states for Schrödinger operators, J. Math. Kyoto Univ. 26 (1986) 595-603. MR 864463 | Zbl 0622.35055

[5] T. Jecko, Sections efficaces totales d'une molécule diatomique dans l'approximation de Born-Oppenheimer, Thèse de Doctorat, Université de Nantes, 1996.

[6] A. Jensen and S. Nakamura, Mapping properties for wave and scattering operators for two-body Schrödinger operators, Lett. Math. Phys. 24 (1992) 295- 305. MR 1172457 | Zbl 0761.35074

[7] K. Jung, Adiabatik und Semiklassik bei Regularität vom Gevrey-Typ, Ph.D. Thesis, Technische Universität Berlin, 1997.

[8] M. Klein, A. Martinez and X.P. Wang, On the Born-Oppenheimer approximation of wave operators, Comm. Math. Phys. 152 (1993).

[9] M. Klein, A. Martinez and X.P. Wang, On the Born-Oppenheimer approximation of wave operators II: Singular potentials, J. Math. Phys. 38 (3) (1997) 1373- 1396. MR 1435674 | Zbl 0874.35103

[10] M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules, Comm. Math. Phys. 143 (1992). MR 1145603 | Zbl 0754.35099

[11] A. Martinez, Estimates on complex interactions in phase space, Math. Nachr. 167 (1994) 203-254. MR 1285313 | Zbl 0836.35135

[12] A. Martinez, Precise exponential estimates in adiabatic theory, J. Math. Phys. 35 (8) (1994) 3889-3915. MR 1284618 | Zbl 0808.47053

[13] A. Melin and J. Sjöstrand, Fourier integral operators with complex-valued phase functions, Lecture Notes in Math., vol. 459, Springer, Berlin, 1975, 120- 223. MR 431289 | Zbl 0306.42007

[14] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78 (1981) 391-408. MR 603501 | Zbl 0489.47010

[15] S. Nakamura, On an example of phase-space tunneling, Ann. Inst. H. Poincaré, 63 (2) (1995). Numdam | MR 1357496 | Zbl 0833.34088

[16] S. Nakamura, On Martinez' method of phase space tunneling, Rev. Math. Phys. 7 (3) (1995) 431-441. MR 1326141 | Zbl 0842.35145

[17] S. Nakamura, Tunneling effects in momentum space and scattering, in: M. Ikawa (Ed.), Spectral and Scattering Theory, Lecture Notes in Pure Appl. Math., vol. 161, Marcel Decker, New York, 1994. MR 1291641 | Zbl 0827.35097

[18] M. Reed and B. S Imon, Methods of Modern Mathematical Physics, Academic Press, 1972.

[19] D. Robert, Autour de l'Approximation Semi-Classique, Birkhäuser, 1987. MR 897108 | Zbl 0621.35001

[20] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982). MR 699623 | Zbl 0524.35007

[21] X.P. Wang, Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators, J. Differential Equations 71 (1988) 348-395. MR 927007 | Zbl 0651.35022