@article{AIHPA_1981__35_2_113_0, author = {Bona, C. and Fustero, X.}, title = {Relativistic spin particles}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {113--130}, publisher = {Gauthier-Villars}, volume = {35}, number = {2}, year = {1981}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1981__35_2_113_0/} }
TY - JOUR AU - Bona, C. AU - Fustero, X. TI - Relativistic spin particles JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1981 SP - 113 EP - 130 VL - 35 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1981__35_2_113_0/ LA - en ID - AIHPA_1981__35_2_113_0 ER -
Bona, C.; Fustero, X. Relativistic spin particles. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 35 (1981) no. 2, pp. 113-130. http://www.numdam.org/item/AIHPA_1981__35_2_113_0/
[1] Phys. Rev., t. 142, 1966, p. 817. , J. Math. Phys., t. 8, 1967, p. 201. | MR
,[2] Ann. Inst. H. Poincaré, t. 12, 1970, p. 307. | Numdam | MR
,Ann. Inst. H. Poincaré, t. 22, 1975, p. 173. | Numdam | MR
, ,[3] Ann. Inst. H. Poincaré, t. 25, 1976, p. 411. | Numdam | Zbl
, ,J. Math. Phys., t. 15, 1974, p. 1689.
,[4] Phys. Rev.).
, , Prepint U. A. B.-FT-49 (Submitted to[5] Phys. Rev.).
, , Prepint U. A. B.-FT-50 (Submitted to[6] Nuovo Cim., t. 65, 1970, p. 245.
, ,[7] Ann. Inst. H. Poincaré, t. 33, 1980, p. 409. | Numdam
, ,Phys. Lett., 75 A, t. 4, 1980, p. 262. | MR
,[8] « Pred. Rel. Mech. of systems of N part. with spin II. : the electromagnetic interaction » (submitted to Ann. Inst. H. Poincuré).
, ,[9] See for instance Classical Dynamics, Wiley, 1974. | MR | Zbl
, ,[10] It is possible, of course, to preserve the canonicity of the coordinates in spite of their transformation properties. To make one or another choice is a matter of taste at this classical level.
[11] Phys. Rev. Lett., t. 2, 1959, p. 435.
, and ,[12] The equations coincide with the ones previously obtained by L. BEL and J. MARTIN (8).
[13] This choice is justified because this restriction is equivalent to the assymptotic condition on the symplectic form limλ→-∞ R(λ)dq ^ dp = dx ^ dp and guarantees the unicity of the Hamiltonian formulation based, in the scalar case, on this symplectic form (See for details the ref. cited below.)
[14] This dimensional condition requires the presence of some new constant with dimensions of a length. This result is a direct consequence of (8.2): no such additional constant is required in the paper by 22, 1975, p. 173), which deals with structureless particles because their corresponding fourdimensional assymptotic condition is even weaker than (8.2).
and (Ann. Inst. H. Poincaré, t.[15] J. Math. Phys., t. 20, 1979, p. 1316. | MR
, and ,