Whitney stratifications and the continuity of local Lipschitz–Killing curvatures
Annales de l'Institut Fourier, Volume 68 (2018) no. 5, pp. 2253-2276.

In the paper we prove that the local Lipschitz–Killing curvatures of a definable set in a polynomially bounded o-minimal structure are continuous along the strata of a Whitney stratification. Moreover, if the stratification is (w)-regular the local Lipschitz–Killing curvatures are locally Lipschitz in any o-minimal structure.

On montre que les courbures Lipschitz–Killing locales d’un ensemble définissable dans une structure o-minimale polynomialement bornée sont continues le long des strates d’une stratification de Whitney. De plus, si la stratification est (w)-régulière les courbures Lipschitz–Killing locales sont localement lipschitziennes dans une structure o-minimale arbitraire.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3208
Classification: 14B15, 14B10, 32B20, 57R45
Keywords: o-minimal structures, definable sets, stratifications, local Lipschitz–Killing curvatures
Mot clés : semblable banalité, autosimilarité logarithmique, loi de Gauß
Nguyen, Nhan 1; Valette, Guillaume 2

1 ICMC, Universidade de São Paulo Avenida trabalhador São-Carlense, 400-Centro, 13566-590 – São Carlos, São Paulo (Brazil)
2 Instytut Matematyki, Uniwersytetu Jagiellońskiego, ul. S. Łojasiewicza 6, 30-348 Kraków (Poland)
@article{AIF_2018__68_5_2253_0,
     author = {Nguyen, Nhan and Valette, Guillaume},
     title = {Whitney stratifications and the continuity of local {Lipschitz{\textendash}Killing} curvatures},
     journal = {Annales de l'Institut Fourier},
     pages = {2253--2276},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {5},
     year = {2018},
     doi = {10.5802/aif.3208},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.3208/}
}
TY  - JOUR
AU  - Nguyen, Nhan
AU  - Valette, Guillaume
TI  - Whitney stratifications and the continuity of local Lipschitz–Killing curvatures
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 2253
EP  - 2276
VL  - 68
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.3208/
DO  - 10.5802/aif.3208
LA  - en
ID  - AIF_2018__68_5_2253_0
ER  - 
%0 Journal Article
%A Nguyen, Nhan
%A Valette, Guillaume
%T Whitney stratifications and the continuity of local Lipschitz–Killing curvatures
%J Annales de l'Institut Fourier
%D 2018
%P 2253-2276
%V 68
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.3208/
%R 10.5802/aif.3208
%G en
%F AIF_2018__68_5_2253_0
Nguyen, Nhan; Valette, Guillaume. Whitney stratifications and the continuity of local Lipschitz–Killing curvatures. Annales de l'Institut Fourier, Volume 68 (2018) no. 5, pp. 2253-2276. doi : 10.5802/aif.3208. http://www.numdam.org/articles/10.5802/aif.3208/

[1] Bernig, Andreas; Bröcker, Ludwig Courbures intrinsèques dans les catégories analytico-géométriques, Ann. Inst. Fourier, Volume 53 (2003) no. 6, pp. 1897-1924 http://aif.cedram.org/item?id=aif_2003__53_6_1897_0 | MR | Zbl

[2] Bröcker, Ludwig; Kuppe, Martin Integral geometry of tame sets, Geom. Dedicata, Volume 82 (2000) no. 1-3, pp. 285-323 | DOI | MR | Zbl

[3] Brodersen, Hans; Trotman, David Whitney (b)-regularity is weaker than Kuo’s ratio test for real algebraic stratifications, Math. Scand., Volume 45 (1979) no. 1, pp. 27-34 | DOI | MR | Zbl

[4] Comte, Georges Équisingularité réelle: nombres de Lelong et images polaires, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 6, pp. 757-788 | DOI | MR | Zbl

[5] Comte, Georges An introduction to o-minimal geometry, Singularity theory and its applications, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligraci Internazionali, Pisa, 2000

[6] Comte, Georges; Merle, Michel Équisingularité réelle. II. Invariants locaux et conditions de régularité, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 2, pp. 221-269 | DOI | MR | Zbl

[7] Draper, Richard N. Intersection theory in analytic geometry, Math. Ann., Volume 180 (1969), pp. 175-204 | DOI | MR | Zbl

[8] van den Dries, Lou Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | DOI | MR | Zbl

[9] van den Dries, Lou; Miller, Chris Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996) no. 2, pp. 497-540 | DOI | MR | Zbl

[10] Dutertre, Nicolas Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets, Geom. Dedicata, Volume 158 (2012), pp. 167-189 | DOI | MR | Zbl

[11] Dutertre, Nicolas Stratified critical points on the real Milnor fibre and integral-geometric formulas, J. Singul., Volume 13 (2015), pp. 87-106 | DOI | MR | Zbl

[12] Dutertre, Nicolas Euler obstruction and Lipschitz-Killing curvatures, Isr. J. Math., Volume 213 (2016) no. 1, pp. 109-137 | DOI | MR | Zbl

[13] Dutertre, Nicolas Lipschitz-Killing curvatures and polar images (2017) (to appear in Adv. Geom.)

[14] Fu, Joseph H. G. Curvature measures of subanalytic sets, Am. J. Math., Volume 116 (1994) no. 4, pp. 819-880 | DOI | MR | Zbl

[15] Gibson, Christopher G.; Wirthmüller, Klaus; du Plessis, Andrew A.; Looijenga, Eduard J. N. Topological stability of smooth mappings, Lecture Notes in Math., 552, Springer, 1976, iv+155 pages | MR | Zbl

[16] Juniati, Dwi; Noirel, Laurent; Trotman, David Whitney, Kuo-Verdier and Lipschitz stratifications for the surfaces y a =z b x c +x d , Topology Appl., Volume 234 (2018), pp. 335-347 | Zbl

[17] Juniati, Dwi; Trotman, David Determination of Lipschitz stratifications for the surfaces y a =z b x c +x d , Singularités Franco-Japonaises (Séminaires et Congrès), Volume 10, Société Mathématique de France, 2005, pp. 127-138 | MR | Zbl

[18] Kurdyka, Krzysztof; Parusiński, Adam Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture, Singularity theory and its applications (Advanced Studies in Pure Mathematics), Volume 43, Mathematical Society of Japan, 2006, pp. 137-177 | MR | Zbl

[19] Kurdyka, Krzysztof; Raby, Gilles Densité des ensembles sous-analytiques, Ann. Inst. Fourier, Volume 39 (1989) no. 3, pp. 753-771 | MR | Zbl

[20] Loi, Ta Lê Verdier and strict Thom stratifications in o-minimal structures, Ill. J. Math., Volume 42 (1998) no. 2, pp. 347-356 http://projecteuclid.org/euclid.ijm/1256045049 | MR | Zbl

[21] Loi, Ta Lê o-minimal structures, The Japanese-Australian Workshop on Real and Complex Singularities—JARCS III (Proc. Centre Math. Appl. Austral. Nat. Univ.), Volume 43, Australian National University, 2010, pp. 19-30 | MR | Zbl

[22] Mather, John Notes on topological stability, Bull. Am. Math. Soc., Volume 49 (2012) no. 4, pp. 475-506 | DOI | MR | Zbl

[23] Nguyen, Xuan Viet Nhan Structure métrique et géométrie des ensembles définissables dans des structures o-minimales, Université Aix-Marseille (France) (2015) (Ph. D. Thesis)

[24] Orro, Patrice; Trotman, David Cône normal et régularités de Kuo-Verdier, Bull. Soc. Math. Fr., Volume 130 (2002) no. 1, pp. 71-85 | MR | Zbl

[25] du Plessis, Andrew A. Continuous controlled vector fields, Singularity theory (Liverpool, 1996) (London Mathematical Society Lecture Note Series), Volume 263, Cambridge University Press, 1999, pp. 189-197 | MR | Zbl

[26] Shiota, Masahiro Geometry of subanalytic and semialgebraic sets, Progress in Mathematics, 150, Birkhäuser, 1997, xii+431 pages | DOI | MR | Zbl

[27] Teissier, Bernard Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981) (Lecture Notes in Math.), Volume 961, Springer, 1982, pp. 314-491 | DOI | MR | Zbl

[28] Trotman, David Whitney stratifications: faults and detectors, University of Warwick (UK) (1977) (Ph. D. Thesis)

[29] Trotman, David; Valette, Guillaume On the local geometry of definably stratified sets, Ordered algebraic structures and related topics (Contemporary Mathematics), Volume 697, American Mathematical Society, 2017, pp. 349-366 | Zbl

[30] Valette, Guillaume Volume, Whitney conditions and Lelong number, Ann. Pol. Math., Volume 93 (2008) no. 1, pp. 1-16 | DOI | MR | Zbl

Cited by Sources: