Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II: Spectral Measure, Restriction Theorem, Spectral Multipliers  [ Résolvante et Mesure Spectrale sur une Variété Asymptotiquement Hyperbolique Non-captant II : Mesure Spectrale, Théorème de Restriction, Multiplicateurs spectraux ]
Annales de l'Institut Fourier, Tome 68 (2018) no. 3, pp. 1011-1075.

Nous considérons le Laplacien Δ sur une variété asymptotiquement hyperbolique X au sens de Mazzeo et Melrose. Nous donnons des estimations ponctuelles sur le noyau de Schwartz de la mesure spectrale pour l’opérateur (Δ-n 2 /4) + 1/2 sur ces variétés, sous l’hypothèse qu’il n’y ni trajectoires captées dans X, ni résonance au bas du spectre. Nous utilisons la construction de la résolvante par Mazzeo et Melrose, Sá Barreto et Vasy, Wang, et nous-mêmes.

Nous donnons deux applications des estimations de la mesure spectrale. La première, qui prolonge l’étude de Guillarmou et Sikora avec le deuxième auteur dans le cas asymptotiquement conique, est un théorème de restriction : c’est-à-dire une borne sur la norme d’opérateur L p (X)L p ' (X) de la mesure spectrale. La seconde est un résultat de type multiplicateur spectral sous l’hypothèse additionnelle que X est à courbure strictement négative partout. Plus précisément, nous donnons une estimation sur les fonctions du laplacien de la forme F((Δ-n 2 /4) + 1/2 ) en termes de normes de la fonction F. Par rapport au cas asymptotiquement conique, notre résultat de multiplicateur spectral est plus faible, mais l’estimation de restriction est plus forte.

We consider the Laplacian Δ on an asymptotically hyperbolic manifold X, as defined by Mazzeo and Melrose. We give pointwise bounds on the Schwartz kernel of the spectral measure for the operator (Δ-n 2 /4) + 1/2 on such manifolds, under the assumptions that X is nontrapping and there is no resonance at the bottom of the spectrum. This uses the construction of the resolvent given by Mazzeo and Melrose, Melrose, Sá Barreto and Vasy, the present authors, and Wang.

We give two applications of the spectral measure estimates. The first, following work due to Guillarmou and Sikora with the second author in the asymptotically conic case, is a restriction theorem, that is, a L p (X)L p ' (X) operator norm bound on the spectral measure. The second is a spectral multiplier result under the additional assumption that X has negative curvature everywhere, that is, a bound on functions of the Laplacian of the form F((Δ-n 2 /4) + 1/2 ), in terms of norms of the function F. Compared to the asymptotically conic case, our spectral multiplier result is weaker, but the restriction estimate is stronger.

Reçu le : 2015-06-16
Révisé le : 2015-12-21
Accepté le : 2016-03-23
Publié le : 2018-05-03
DOI : https://doi.org/10.5802/aif.3183
Classification : 58J50,  35P25,  47F05
Mots clés : Variété asymptotiquement hyperbolique, mesure spectrale, théorème de restriction, multiplicateur spectral
@article{AIF_2018__68_3_1011_0,
     author = {Chen, Xi and Hassell, Andrew},
     title = {Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II:  Spectral Measure, Restriction Theorem, Spectral Multipliers},
     journal = {Annales de l'Institut Fourier},
     pages = {1011--1075},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.5802/aif.3183},
     language = {en},
     url = {www.numdam.org/item/AIF_2018__68_3_1011_0/}
}
Chen, Xi; Hassell, Andrew. Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II:  Spectral Measure, Restriction Theorem, Spectral Multipliers. Annales de l'Institut Fourier, Tome 68 (2018) no. 3, pp. 1011-1075. doi : 10.5802/aif.3183. http://www.numdam.org/item/AIF_2018__68_3_1011_0/

[1] Anker, Jean-Philippe; Pierfelice, Vittoria Nonlinear Schrödinger equation on real hyperbolic spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 5, pp. 1853-1869 | Article | Zbl 1176.35166

[2] Anker, Jean-Philippe; Pierfelice, Vittoria Wave and Klein-Gordon equations on hyperbolic spaces, Anal. PDE, Volume 7 (2014) no. 4, pp. 953-995 | Article | Zbl 1297.35138

[3] Bouclet, Jean-Marc Semi-classical functional calculus on manifolds with ends and weighted L p estimates, Ann. Inst. Fourier, Volume 61 (2011) no. 3, pp. 1181-1223 | Article | Zbl 1236.58033

[4] Bouclet, Jean-Marc Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds, Ann. Global Anal. Geom., Volume 44 (2013) no. 2, pp. 115-136 | Article | Zbl 1286.58019

[5] Bunke, Ulrich; Olbrich, Martin The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function, with an appendix by Andreas Juhl, Ann. Global Anal. Geom., Volume 4 (1994), pp. 357-405 | Article | Zbl 0832.53041

[6] Burq, Nicolas; Guillarmou, Colin; Hassell, Andrew Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics, Geom. Funct. Anal., Volume 20 (2010), pp. 627-656 | Article | Zbl 1206.58009

[7] Cheeger, Jeff; Gromov, Mikhail; Taylor, Michael E. Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., Volume 17 (1982), pp. 15-53 | Article | Zbl 0493.53035

[8] Chen, Xi Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III: Global-in-Time Strichartz estimates without loss, Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2017) (https://doi.org/10.1016/j.anihpc.2017.08.003) | Article

[9] Chen, Xi Stein-Tomas restriction theorem via spectral measure on metric measure spaces, Math. Z. (2017) (https://doi.org/10.1007/s00209-017-1976-y) | Article

[10] Chen, Xi; Hassell, Andrew Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy, Commun. Partial Differ. Equations, Volume 41 (2016) no. 3, pp. 515-578 | Article | Zbl 1351.58018

[11] Clerc, J.L.; Stein, Elias M. L p -multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. USA, Volume 10 (1974), p. 3911-3912 | Article | Zbl 0296.43004

[12] Davies, Edward Brian; Mandouvalos, Nikolaos Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. Lond. Math. Soc., Volume 57 (1988) no. 1, pp. 182-208 | Article | Zbl 0643.30035

[13] Graham, C.Robin; Zworski, Maciej Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003), pp. 89-118 | Article | Zbl 1030.58022

[14] Guillarmou, Colin Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J., Volume 129 (2005) no. 1, pp. 1-37 | Article | Zbl 1099.58011

[15] Guillarmou, Colin; Hassell, Andrew Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds II, Annales de l’Institut Fourier, Volume 59 (2009) no. 4, pp. 1553-1610 | Article | Zbl 1175.58011

[16] Guillarmou, Colin; Hassell, Andrew Uniform Sobolev estimates for non-trapping metrics, J. Inst. Math. Jussieu, Volume 13 (2014) no. 3, pp. 599-632 | Article | Zbl 1321.58013

[17] Guillarmou, Colin; Hassell, Andrew; Sikora, Adam Restriction and spectral multiplier theorems on asymptotically conic manifolds, Anal. PDE, Volume 6 (2013) no. 4, pp. 893-950 | Article | Zbl 1293.35187

[18] Hassell, Andrew; Vasy, András The spectral projections and the resolvent for scattering metrics, J. Anal. Math., Volume 79 (1999), pp. 241-298 | Article | Zbl 0981.58025

[19] Hassell, Andrew; Zhang, Junyong Global-in-time Strichartz estimates on non-trapping asymptotically conic manifolds, Anal. PDE, Volume 9 (2016) no. 1, pp. 151-192 | Article | Zbl 1333.35226

[20] Hörmander, Lars The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften, Volume 256, Springer, 1990 | Zbl 0712.35001

[21] Huang, Shanlin; Sogge, Christopher D. Concerning L p resolvent estimates for simply connected manifolds of constant curvature, J. Funct. Anal., Volume 267 (2014) no. 12, pp. 4635-4666 | Article | Zbl 1303.53052

[22] Ionescu, Alexandru D.; Staffilani, Gigliola Semilinear Schrödinger flows on hyperbolic spaces: scattering in H 1 , Math. Ann., Volume 345 (2009), pp. 133-158 | Article | Zbl 1203.35262

[23] Jensen, Arne; Kato, Tosio Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979) no. 3, pp. 583-611 | Article | Zbl 0448.35080

[24] Joshi, Mark S.; Sá Barreto, Antônio Inverse scattering on asymptotically hyperbolic manifolds, Acta Math., Volume 184 (2000), pp. 41-86 | Article | Zbl 1142.58309

[25] Kunze, Ray Alden; Stein, Elias M. Uniformly bounded representations and harmonic analysis of the 2×2 unimodular group, Am. J. Math., Volume 82 (1960), pp. 1-62 | Article | Zbl 0156.37104

[26] Mazzeo, Rafe R. Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Am. J. Math., Volume 113 (1991) no. 1, pp. 25-45 | Article | Zbl 0725.58044

[27] Mazzeo, Rafe R.; Melrose, Richard B. Meromorphic extention of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987), pp. 260-310 | Article | Zbl 0636.58034

[28] Melrose, Richard B. Geometric Scattering Theory, Stanford Lectures, Cambridge University Press, 1995 | Zbl 0849.58071

[29] Melrose, Richard B.; Sá Barreto, Antônio; Vasy, András Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces, Commun. Partial Differ. Equations, Volume 39 (2014) no. 3, pp. 452-511 | Article | Zbl 1323.58020

[30] Melrose, Richard B.; Zworski, Maciej Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 | Article | Zbl 0855.58058

[31] Reed, Michael; Simon, Barry Methods of Modern Mathematical Physics: I Functional Analysis., Academic Press, New York, 1980 | Zbl 0459.46001

[32] Sogge, Christopher D. Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, Volume 105, Cambridge University Press, 1993 | Zbl 0783.35001

[33] Stein, Elias M. Interpolation of linear operators, Trans. Am. Math. Soc., Volume 83 (1956), pp. 482-492 | Article | Zbl 0072.32402

[34] Stein, Elias M. Oscillatory integrals in Fourier analysis, Ann. Math. Stud., Volume 112 (1986), pp. 307-355 | Zbl 0618.42006

[35] Taylor, Michael E. L p -estimates on functions of the Laplace operator, Duke Math. J., Volume 58 (1989) no. 3, pp. 773-793 | Article | Zbl 0691.58043

[36] Taylor, Michael E. Partial Differential Equations II: Qualitative Studies of Linear Equations, Applied Mathematical Sciences, Volume 116, Springer, 1996 | Zbl 1206.35005

[37] Tomas, Peter A. A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975), p. 477-478 | Article | Zbl 0298.42011

[38] Wang, Yiran Resolvent and Radiation Fields on Non-trapping Asymptotically Hyperbolic Manifolds (2014) (https://arxiv.org/abs/1410.6936)

[39] Zworski, Maciej Semiclassical Analysis, Graduate Studies in Mathematics, Volume 138, American Mathematical Society, 2012 | Zbl 1252.58001