We introduce a calculus for the class of direct images of semi-meromorphic currents on a reduded analytic space , that extends the classical calculus due to Coleff, Herrera and Passare. Our main result is that each element in this class acts as a kind of multiplication on the sheaf of pseudomeromorphic currents on . We also prove that as well as and certain subsheaves are closed under the action of holomorphic differential operators and interior multiplication by holomorphic vector fields.
Nous introduisons un calcul pour la classe d’images directes de courants semi-méromorphes sur un espace analytique reduit , qui étend le calcul classique de Coleff, Herrera et Passare. Notre résultat principal montre que chaque élément de cette classe agit de manière analogue à une multiplication sur le faisceau de courants pseudoméromorphes sur . Nous prouvons également que ainsi que et certains sous-faisceaux sont fermés sous l’action des opérateurs différentiels holomorphes et la multiplication intérieure par des champs vectoriels holomorphes.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3180
Keywords: residue current, semi-meromorphic current, analytic space, pseudomeromorphic current
Mot clés : courant résiduel, courant semi-méromorphe, espace analytique, courant pseudoméromorphe
@article{AIF_2018__68_2_875_0, author = {Andersson, Mats and Wulcan, Elizabeth}, title = {Direct images of semi-meromorphic currents}, journal = {Annales de l'Institut Fourier}, pages = {875--900}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3180}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3180/} }
TY - JOUR AU - Andersson, Mats AU - Wulcan, Elizabeth TI - Direct images of semi-meromorphic currents JO - Annales de l'Institut Fourier PY - 2018 SP - 875 EP - 900 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3180/ DO - 10.5802/aif.3180 LA - en ID - AIF_2018__68_2_875_0 ER -
%0 Journal Article %A Andersson, Mats %A Wulcan, Elizabeth %T Direct images of semi-meromorphic currents %J Annales de l'Institut Fourier %D 2018 %P 875-900 %V 68 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3180/ %R 10.5802/aif.3180 %G en %F AIF_2018__68_2_875_0
Andersson, Mats; Wulcan, Elizabeth. Direct images of semi-meromorphic currents. Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 875-900. doi : 10.5802/aif.3180. http://www.numdam.org/articles/10.5802/aif.3180/
[1] Multivariable residue calculus and integral formulas (http://www.math.chalmers.se/~matsa/3introresidy.pdf)
[2] Ideals of smooth functions and residue currents, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 76-88 | DOI | MR | Zbl
[3] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl
[4] Uniqueness and factorization of Coleff-Herrera currents, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 651-661 http://afst.cedram.org/item?id=AFST_2009_6_18_4_651_0 | DOI | MR | Zbl
[5] A residue criterion for strong holomorphicity, Ark. Mat., Volume 48 (2010) no. 1, pp. 1-15 | DOI | MR | Zbl
[6] Pseudomeromorphic currents on subvarieties, Complex Var. Elliptic Equ., Volume 61 (2016) no. 11, pp. 1533-1540 | DOI | MR | Zbl
[7] A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas, Invent. Math., Volume 190 (2012) no. 2, pp. 261-297 | DOI | MR | Zbl
[8] On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier, Volume 60 (2010) no. 2, pp. 417-432 http://aif.cedram.org/item?id=AIF_2010__60_2_417_0 | DOI | MR | Zbl
[9] Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | DOI | MR | Zbl
[10] Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | DOI | MR | Zbl
[11] Global effective versions of the Briançon-Skoda-Huneke theorem, Invent. Math., Volume 200 (2015) no. 2, pp. 607-651 | DOI | MR | Zbl
[12] Residues and -modules, The legacy of Niels Henrik Abel, Springer, 2004, pp. 605-651 | MR | Zbl
[13] Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, 1978, x+211 pages | MR | Zbl
[14] Residues and principal values on complex spaces, Math. Ann., Volume 194 (1971), pp. 259-294 | DOI | MR | Zbl
[15] Residue currents associated with weakly holomorphic functions, Ark. Mat., Volume 50 (2012) no. 1, pp. 135-164 | DOI | MR | Zbl
[16] On the duality theorem on an analytic variety, Math. Ann., Volume 355 (2013) no. 1, pp. 215-234 | DOI | MR | Zbl
[17] Various approaches to products of residue currents, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 118-138 | DOI | MR | Zbl
[18] An effective uniform Artin-Rees lemma, Analysis Meets Geometry (Trends in Mathematics), Birkhäuser/Springer, 2017, pp. 335-348
[19] Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. Fr., Volume 91 (1963), pp. 113-127 | DOI | MR | Zbl
[20] A calculus for meromorphic currents, J. Reine Angew. Math., Volume 392 (1988), pp. 37-56 | DOI | MR | Zbl
[21] Residue currents of the Bochner-Martinelli type, Publ. Mat., Volume 44 (2000) no. 1, pp. 85-117 | DOI | MR | Zbl
[22] Explicit Serre duality on complex spaces, Adv. Math., Volume 305 (2017), pp. 1320-1355 | DOI | MR | Zbl
[23] Holomorphic forms, the -equation, and duality on a reduced complex space (http://arxiv.org/abs/1506.07842)
[24] A Briançon-Skoda-type result for a non-reduced analytic space (to appear in J. Reine Angew. Math.)
[25] A residue calculus approach to the uniform Artin-Rees lemma, Isr. J. Math., Volume 196 (2013) no. 1, pp. 33-50 | DOI | MR | Zbl
[26] Products of residue currents of Cauchy-Fantappiè-Leray type, Ark. Mat., Volume 45 (2007) no. 1, pp. 157-178 | DOI | Zbl
Cited by Sources: