On traite la régularité globale des ensembles minimaux 2-dimensionnels qui sont proches d’une union de deux plans, et on démontre que tout ensemble minimal proche d’une union de deux plans presque orthogonaux à l’infini dans est un cône. L’enjeu est de contrôler le comportement d’un ensemble minimal à petite échelle par la topologie à grande échelle.
We discuss the global regularity of 2 dimensional minimal sets that are near a union of two planes, and prove that every global minimal set in that looks like a union of two almost orthogonal planes at infinity is a cone. The main point is to use the topological properties of a minimal set at a large scale to control its behavior at smaller scales.
Révisé le : 2013-01-20
Accepté le : 2013-09-01
Publié le : 2016-07-27
Classification : 28A75, 49Q10, 49Q20, 49K99
Mots clés : Ensembles minimaux, limites d’explosion, existence de singularités, mesure de Hausdorff, système elliptiques.
@article{AIF_2016__66_5_2067_0, author = {Liang, Xiangyu}, title = {Global regularity for minimal sets near a union of two planes}, journal = {Annales de l'Institut Fourier}, pages = {2067--2099}, publisher = {Association des Annales de l'institut Fourier}, volume = {66}, number = {5}, year = {2016}, doi = {10.5802/aif.3058}, language = {en}, url = {www.numdam.org/item/AIF_2016__66_5_2067_0/} }
Liang, Xiangyu. Global regularity for minimal sets near a union of two planes. Annales de l'Institut Fourier, Tome 66 (2016) no. 5, pp. 2067-2099. doi : 10.5802/aif.3058. http://www.numdam.org/item/AIF_2016__66_5_2067_0/
[1] On the first variation of a varifold, Ann. of Math. (2), Volume 95 (1972), pp. 417-491 | Article
[2] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., Volume 4 (1976) no. 165, viii+199 pages
[3] Sur un théorème de géométrie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Soc. Math. de Khardov, Volume 15 (1915–17), pp. 38-45
[4] Zur Theorie der Minimalflächen, Math. Z., Volume 9 (1921) no. 1-2, pp. 154-160 | Article
[5] Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics, Volume 233, Birkhäuser Verlag, Basel, 2005, xiv+581 pages
[6] Hölder regularity of two-dimensional almost-minimal sets in , Ann. Fac. Sci. Toulouse Math. (6), Volume 18 (2009) no. 1, pp. 65-246 http://afst.cedram.org/item?id=AFST_2009_6_18_1_65_0 | Article
[7] -regularity for two-dimensional almost-minimal sets in , J. Geom. Anal., Volume 20 (2010) no. 4, pp. 837-954 | Article
[8] Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Mem. Amer. Math. Soc., Volume 144 (2000) no. 687, viii+132 pages | Article
[9] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pages
[10] Almgren-minimality of unions of two almost orthogonal planes in , Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 5, pp. 1005-1059 | Article
[11] Almgren and topological minimality for the set , J. Funct. Anal., Volume 266 (2014) no. 10, pp. 6007-6054 | Article
[12] Global regularity for minimal sets near a -set and counterexamples, Rev. Mat. Iberoam., Volume 30 (2014) no. 1, pp. 203-236 | Article
[13] Harnack-type mass bounds and Bernstein theorems for area-minimizing flat chains modulo , Comm. Partial Differential Equations, Volume 11 (1986) no. 12, pp. 1257-1283 | Article
[14] Size-minimizing rectifiable currents, Invent. Math., Volume 96 (1989) no. 2, pp. 333-348 | Article
[15] Second-order elliptic systems of differential equations, Contributions to the theory of partial differential equations (Annals of Mathematics Studies, no. 33), Princeton University Press, Princeton, N. J., 1954, pp. 101-159
[16] A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969, iv+159 pp. (1 plate) pages
[17] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2), Volume 103 (1976) no. 3, pp. 489-539 | Article