Codimension two index obstructions to positive scalar curvature
Annales de l'Institut Fourier, Volume 65 (2015) no. 6, p. 2681-2710

We derive a general obstruction to the existence of Riemannian metrics of positive scalar curvature on closed spin manifolds in terms of hypersurfaces of codimension two. The proof is based on coarse index theory for Dirac operators that are twisted with Hilbert C * -module bundles.

Along the way we give a complete and self-contained proof that the minimal closure of a Dirac type operator twisted with a Hilbert C * -module bundle on a complete Riemannian manifold is a regular and self-adjoint operator on the Hilbert C * -module of L 2 -sections of this bundle.

Moreover, we give a new proof of Roe’s vanishing theorem for the coarse index of the Dirac operator on a complete non-compact Riemannian manifold whose scalar curvature is uniformly positive outside of a compact subset. This proof immediately generalizes to Dirac operators twisted with flat Hilbert C * -module bundles.

Nous dérivons une obstruction générale à l’existence d’une métrique à courbure scalaire positive sur une variété compacte spin, qui est basée sur des sous-variétés de codimension deux. La preuve utilise la théorie d’indice grossier (synonymement “indice a grande échelle”) pour l’opérateur de Dirac tordu par un fibré de C * -modules Hilbertiens.

En cours de route nous donnons une preuve complète et indépendant du fait que la clôture minimale d’un opérateur de type Dirac sur une variété complète, tordu par un fibré de C * -modules Hilbertiens, est régulière et auto-adjointe comme operateur non-borné sur le C * -module Hilbertien des sections L 2 -intégrables de ce fibré.

En outre, nous donnons une preuve nouvelle du théorème de Roe affirmant que l’indice grossier de l’opérateur de Dirac est nul pour une variété Riemannienne complète non-compacte avec courbure scalaire uniformement positive en dehors d’un sous-ensemble compact. Notre preuve se généralise immédiatement aux operateurs de Dirac tordu par un fibré plat de C * -modules Hilbertiens.

DOI : https://doi.org/10.5802/aif.3000
Classification:  46L80,  19K56,  19L64,  53C20,  58J22,  53C27
Keywords: index theory, positive scalar curvature, codimension 2, hypersurface, Mishchenko-Fomenko index, large scale geometry, coarse geometry, large scale index theory, coarse index theory
@article{AIF_2015__65_6_2681_0,
     author = {Hanke, Bernhard and Pape, Daniel and Schick, Thomas},
     title = {Codimension two index obstructions to positive scalar curvature},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {65},
     number = {6},
     year = {2015},
     pages = {2681-2710},
     doi = {10.5802/aif.3000},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2015__65_6_2681_0}
}
Hanke, Bernhard; Pape, Daniel; Schick, Thomas. Codimension two index obstructions to positive scalar curvature. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2681-2710. doi : 10.5802/aif.3000. http://www.numdam.org/item/AIF_2015__65_6_2681_0/

[1] Abramowitz, Milton; Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., National Bureau of Standards Applied Mathematics Series, Tome 55 (1964), pp. xiv+1046 | MR 167642 | Zbl 0643.33001

[2] Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques Riemannian geometry, Springer-Verlag, Berlin, Universitext (2004), pp. xvi+322 | Article | MR 2088027 | Zbl 1068.53001

[3] Ginoux, Nicolas The Dirac spectrum, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1976 (2009), pp. xvi+156 | Article | MR 2509837 | Zbl 1186.58020

[4] Gromov, Mikhael; Lawson, H. Blaine Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983) no. 58, p. 83-196 (1984) | Numdam | MR 720933 | Zbl 0538.53047

[5] Hanke, B.; Schick, T. Enlargeability and index theory, J. Differential Geom., Tome 74 (2006) no. 2, pp. 293-320 http://projecteuclid.org/euclid.jdg/1175266206 | MR 2259056 | Zbl 1122.58011

[6] Hanke, Bernhard; Kotschick, Dieter; Roe, John; Schick, Thomas Coarse topology, enlargeability, and essentialness, Ann. Sci. Éc. Norm. Supér. (4), Tome 41 (2008) no. 3, pp. 471-493 | Numdam | MR 2482205 | Zbl 1169.53032

[7] Hanke, Bernhard; Schick, Thomas Enlargeability and index theory: infinite covers, K-Theory, Tome 38 (2007) no. 1, pp. 23-33 | Article | MR 2353861 | Zbl 1128.58012

[8] Higson, Nigel; Pedersen, Erik Kjær; Roe, John C * -algebras and controlled topology, K-Theory, Tome 11 (1997) no. 3, pp. 209-239 | Article | MR 1451755 | Zbl 0879.19003

[9] Higson, Nigel; Roe, John Analytic K -homology, Oxford University Press, Oxford, Oxford Mathematical Monographs (2000), pp. xviii+405 (Oxford Science Publications) | MR 1817560 | Zbl 0968.46058

[10] Higson, Nigel; Roe, John; Yu, Guoliang A coarse Mayer-Vietoris principle, Math. Proc. Cambridge Philos. Soc., Tome 114 (1993) no. 1, pp. 85-97 | Article | MR 1219916 | Zbl 0792.55001

[11] Hilsum, Michel; Skandalis, Georges Invariance par homotopie de la signature à coefficients dans un fibré presque plat, J. Reine Angew. Math., Tome 423 (1992), pp. 73-99 | Article | MR 1142484 | Zbl 0731.55013

[12] Kucerovsky, Dan Functional calculus and representations of C 0 () on a Hilbert module, Q. J. Math., Tome 53 (2002) no. 4, pp. 467-477 | Article | MR 1949157 | Zbl 1036.46043

[13] Lance, E. C. Hilbert C * -modules, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 210 (1995), pp. x+130 (A toolkit for operator algebraists) | Article | MR 1325694 | Zbl 0822.46080

[14] Lawson, H. Blaine Jr.; Michelsohn, Marie-Louise Spin geometry, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 38 (1989), pp. xii+427 | MR 1031992 | Zbl 0688.57001

[15] Miščenko, A. S.; Fomenko, A. T. The index of elliptic operators over C * -algebras, Izv. Akad. Nauk SSSR Ser. Mat., Tome 43 (1979) no. 4, p. 831-859, 967 | MR 548506 | Zbl 0416.46052

[16] Pape, Daniel Index theory and positive scalar curvature, Georg-August-Universität Göttingen (2011) (Ph. D. Thesis) | Zbl 1294.53002

[17] Piazza, Paolo; Schick, Thomas Rho-classes, index theory and Stolz’ positive scalar curvature sequence, J. Topol., Tome 7 (2014) no. 4, pp. 965-1004 | MR 3286895

[18] Roe, John Positive curvature, partial vanishing theorems, and coarse indices (http://arxiv.org/abs/1210.6100)

[19] Roe, John Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc., Tome 104 (1993) no. 497, pp. x+90 | Article | MR 1147350 | Zbl 0780.58043

[20] Roe, John Index theory, coarse geometry, and topology of manifolds, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, CBMS Regional Conference Series in Mathematics, Tome 90 (1996), pp. x+100 | MR 1399087 | Zbl 0853.58003

[21] Roe, John Elliptic operators, topology and asymptotic methods, Longman, Harlow, Pitman Research Notes in Mathematics Series, Tome 395 (1998), pp. ii+209 | MR 1670907 | Zbl 0919.58060

[22] Rosenberg, J. C * -algebras, positive scalar curvature and the Novikov conjecture. II, Geometric methods in operator algebras (Kyoto, 1983), Longman Sci. Tech., Harlow (Pitman Res. Notes Math. Ser.) Tome 123 (1986), pp. 341-374 | MR 866507 | Zbl 0658.53039

[23] Rosenberg, Jonathan C * -algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983) no. 58, p. 197-212 (1984) | MR 720934 | Zbl 0658.53039

[24] Rosenberg, Jonathan C * -algebras, positive scalar curvature, and the Novikov conjecture. III, Topology, Tome 25 (1986) no. 3, pp. 319-336 | Article | MR 842428 | Zbl 0605.53020

[25] Rosenberg, Jonathan; Stolz, Stephan Metrics of positive scalar curvature and connections with surgery, Surveys on surgery theory, Vol. 2, Princeton Univ. Press, Princeton, NJ (Ann. of Math. Stud.) Tome 149 (2001), pp. 353-386 | MR 1818778 | Zbl 0971.57003

[26] Rosenberg, Jonathan; Weinberger, Shmuel Higher G-signatures for Lipschitz manifolds, K-Theory, Tome 7 (1993) no. 2, pp. 101-132 | Article | MR 1235284 | Zbl 0791.58004

[27] Schick, Thomas A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology, Tome 37 (1998) no. 6, pp. 1165-1168 | Article | MR 1632971 | Zbl 0976.53052

[28] Schick, Thomas; Zadeh, Mostafa Esfahani Large scale index of multi-partitioned manifolds (http://arxiv.org/abs/1308.0742, to appear in Journal of Non-Commutative Geometry)

[29] Schoen, R.; Yau, S. T. On the structure of manifolds with positive scalar curvature, Manuscripta Math., Tome 28 (1979) no. 1-3, pp. 159-183 | Article | MR 535700 | Zbl 0423.53032

[30] Schrödinger, Erwin Diracsches Elektron im Schwerefeld. I., Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. (1932) no. 11-12, pp. 105-128 | Zbl 0004.28100

[31] Stolz, Stephan Positive scalar curvature metrics—existence and classification questions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), pp. 625-636 | MR 1403963 | Zbl 0848.57021

[32] Stolz, Stephan Manifolds of positive scalar curvature, Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), Abdus Salam Int. Cent. Theoret. Phys., Trieste (ICTP Lect. Notes) Tome 9 (2002), pp. 661-709 | MR 1937026 | Zbl 0804.57011

[33] Vassout, Stéphane Feuilletages et résidu non commutatif longitudinal, Université Pierre et Marie Curie – Paris VI (2001) (Ph. D. Thesis)

[34] Yu, Guoliang K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra, K-Theory, Tome 11 (1997) no. 1, pp. 1-15 | Article | MR 1435703 | Zbl 0882.58052

[35] Zadeh, Mostafa Esfahani Index theory and partitioning by enlargeable hypersurfaces, J. Noncommut. Geom., Tome 4 (2010) no. 3, pp. 459-473 | Article | MR 2670972 | Zbl 1201.58020

[36] Zadeh, Mostafa Esfahani A note on some classical results of Gromov-Lawson, Proc. Amer. Math. Soc., Tome 140 (2012) no. 10, pp. 3663-3672 | Article | MR 2929034