Wea are interested in the regularity of a minimal singular metric of a line bundle. One main conclusion of our general result in this paper is the existence of smooth Hermitian metrics with semi-positive curvatures on the so-called Zariski’s example of a line bundle defined over the blow-up of at twelve points. This is an example of a line bundle which is nef, big, not semi-ample, and whose section ring is not finitely generated. We generalize this result to the higher dimensional case when the stable base locus of a line bundle is a smooth hypersurface with a holomorphic tubular neighborhood.
On s’intéresse à la régularité d’une métrique singulière minimale d’un fibré en droites. Une des conséquences principales du résultat général de cet article est l’existence des métriques Hermitiennes lisses à courbure semi-positive sur . Ici, denote l’exemple de Zariski d’un fibré en droites défini sur l’éclatement du plan projectif en douze points. C’est un exemple de fibré en droites qui est nef, gros et non semi-ample et dont l’anneau des sections n’est pas de type fini. Nous généralisons ce résultat au cas de la dimension supérieure lorsque le lieu de base stable d’un fibré en droites est une hypersurface lisse avec un voisinage tubulaire holomorphe.
Keywords: minimal singular metrics, tubular neighborhoods, Zariski’s example
Mot clés : métriques singulières minimales, voisinages tubulaires, l’exemple de Zariski
@article{AIF_2015__65_5_1953_0, author = {Koike, Takayuki}, title = {On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated}, journal = {Annales de l'Institut Fourier}, pages = {1953--1967}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {5}, year = {2015}, doi = {10.5802/aif.2978}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2978/} }
TY - JOUR AU - Koike, Takayuki TI - On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated JO - Annales de l'Institut Fourier PY - 2015 SP - 1953 EP - 1967 VL - 65 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2978/ DO - 10.5802/aif.2978 LA - en ID - AIF_2015__65_5_1953_0 ER -
%0 Journal Article %A Koike, Takayuki %T On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated %J Annales de l'Institut Fourier %D 2015 %P 1953-1967 %V 65 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2978/ %R 10.5802/aif.2978 %G en %F AIF_2015__65_5_1953_0
Koike, Takayuki. On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated. Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 1953-1967. doi : 10.5802/aif.2978. http://www.numdam.org/articles/10.5802/aif.2978/
[1] Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[2] Complex Analytic and Differential Geometry (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/analmeth_book.pdf)
[3] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, pp. viii+231 | Zbl
[4] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994) no. 2, pp. 295-345 | Zbl
[5] Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | Zbl
[6] A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math., Volume 681 (2013), pp. 149-174 | Zbl
[7] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | Zbl
[8] Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004, pp. xviii+387 (Classical setting: line bundles and linear series) | DOI | Zbl
[9] Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci., Volume 20 (1984) no. 1, pp. 21-38 | DOI | Zbl
[10] Strongly pseudoconvex manifolds, Lectures in Modern Analysis and Applications, I, Springer, Berlin, 1969, pp. 10-29 | Zbl
Cited by Sources: