Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques
Annales de l'Institut Fourier, Tome 65 (2015) no. 5, pp. 1921-1952.

Nous prouvons que certains espaces pseudo-riemanniens symétriques n’admettent pas d’ouvert strict divisible par l’action d’un groupe discret d’isométries. Autrement dit, si une variété pseudo-riemannienne compacte est localement isométrique à un tel espace, et si son application développante est injective, alors la variété est géodésiquement complète, et donc isométrique à un quotient de l’espace modèle tout entier. Ces résultats étendent, sous une hypothèse supplémentaire (l’injectivité de l’application développante), les théorèmes de Carrière et Klingler selon lesquels les variétés lorentziennes compactes de courbure constante sont géodésiquement complètes.

We prove that certain pseudo-Riemannian symmetric spaces do not admit a proper domain which is divisible by the action of a discrete group of isometries. In other words, if a closed pseudo-Riemannian manifold is locally isometric to such a model, and if its developing map is injective, then the manifold is actually geodesically complete, and therefore isometric to a quotient of the whole model space. Those results extend, under an additional assumption (the injectivity of the developing map), the theorems of Carrière and Klingler stating that closed Lorentz manifolds of constant curvature are geodesically complete.

DOI : https://doi.org/10.5802/aif.2977
Classification : 53C50,  53C35,  22E40
Mots clés : Variété pseudo-riemannienne, (G,X)–structure, action proprement discontinue
@article{AIF_2015__65_5_1921_0,
     author = {Tholozan, Nicolas},
     title = {Sur la compl\'etude de certaines vari\'et\'es pseudo-riemanniennes localement sym\'etriques},
     journal = {Annales de l'Institut Fourier},
     pages = {1921--1952},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {65},
     number = {5},
     year = {2015},
     doi = {10.5802/aif.2977},
     language = {fr},
     url = {www.numdam.org/item/AIF_2015__65_5_1921_0/}
}
Tholozan, Nicolas. Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques. Annales de l'Institut Fourier, Tome 65 (2015) no. 5, pp. 1921-1952. doi : 10.5802/aif.2977. http://www.numdam.org/item/AIF_2015__65_5_1921_0/

[1] Benoist, Yves Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math., Volume 164 (2006) no. 2, pp. 249-278 | Article | Zbl 1107.22006

[2] Borel, Armand Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | Zbl 0116.38603

[3] Borel, Armand; Tits, Jacques Groupes réductifs, Publ. Math. Inst. Hautes Études Sci., Volume 27 (1965), pp. 55-150 | Numdam | Zbl 0145.17402

[4] Carrière, Yves Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., Volume 95 (1989) no. 3, pp. 615-628 | Article | Zbl 0682.53051

[5] Dumitrescu, Sorin; Zeghib, Abdelghani Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, Math. Ann., Volume 345 (2009) no. 1, pp. 53-81 | Article | Zbl 1172.53048

[6] Ehresmann, Charles Sur les Espaces localement homogènes, Enseign. Math., Volume 35 (1936), pp. 317-333 | Zbl 0015.39404

[7] Frances, Charles Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 5, pp. 741-764 | Article | Numdam | Zbl 1135.53016

[8] Fried, David; Goldman, William; Hirsch, Morris W. Affine manifolds with nilpotent holonomy, Comment. Math. Helv., Volume 56 (1981) no. 4, pp. 487-523 | Article | Zbl 0516.57014

[9] Gallo, Daniel; Kapovich, Michael; Marden, Albert The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. (2), Volume 151 (2000) no. 2, pp. 625-704 | Article | Zbl 0977.30028

[10] Ghys, Étienne Déformations des structures complexes sur les espaces homogènes de SL (2,), J. Reine Angew. Math., Volume 468 (1995), pp. 113-138 | Article | Zbl 0868.32023

[11] Goldman, William; Hirsch, Morris W. The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc., Volume 286 (1984) no. 2, pp. 629-649 | Article | Zbl 0561.57014

[12] Goldman, William M. Nonstandard Lorentz space forms, J. Differential Geom., Volume 21 (1985) no. 2, pp. 301-308 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439567 | Zbl 0591.53051

[13] Goldman, William M. Locally homogeneous geometric manifolds, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 717-744 | Zbl 1234.57001

[14] Gromov, Michael Rigid transformation groups, Géométrie différentielle (Paris, 1986) (Travaux en Cours) Volume 33, Hermann, Paris, 1988, pp. 65-139 | Zbl 0652.53023

[15] Guediri, Mohammed; Lafontaine, Jacques Sur la complétude des variétés pseudo-riemanniennes, J. Geom. Phys., Volume 15 (1995) no. 2, pp. 150-158 | Article | Zbl 0818.53083

[16] Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna Anosov representations and proper actions (http://arxiv.org/abs/1502.03811)

[17] Guéritaud, François; Kassel, Fanny Maximally stretched laminations on geometrically finite hyperbolic manifolds (http://arxiv.org/abs/1307.0250, à paraître à Geometry & Topology)

[18] Jo, Kyeonghee; Kim, Inkang Convex affine domains and Markus conjecture, Math. Z., Volume 248 (2004) no. 1, pp. 173-182 | Article | Zbl 1061.52006

[19] Kassel, Fanny Proper actions on corank-one reductive homogeneous spaces, J. Lie Theory, Volume 18 (2008) no. 4, pp. 961-978 | Zbl 1173.22009

[20] Kassel, Fanny Quotients compacts d’espaces homogènes réels ou p -adiques (2009) (Ph. D. Thesis)

[21] Klingler, Bruno Complétude des variétés lorentziennes à courbure constante, Math. Ann., Volume 306 (1996) no. 2, pp. 353-370 | Article | Zbl 0862.53048

[22] Knapp, Anthony W. Lie groups beyond an introduction, Progress in Mathematics, Volume 140, Birkhäuser Boston Inc., Boston, MA, 2002, pp. xviii+812 | Zbl 1075.22501

[23] Kobayashi, Toshiyuki On discontinuous groups acting on homogeneous spaces with noncompact isotropy subgroups, J. Geom. Phys., Volume 12 (1993) no. 2, pp. 133-144 | Article | Zbl 0815.57029

[24] Kobayashi, Toshiyuki Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann., Volume 310 (1998), pp. 394-408 | Zbl 0891.22014

[25] Kulkarni, Ravi S.; Pinkall, Ulrich Uniformization of geometric structures with applications to conformal geometry, Differential geometry, Peñíscola 1985 (Lecture Notes in Math.) Volume 1209, Springer, Berlin, 1986, pp. 190-209 | Article | Zbl 0612.57017

[26] Kulkarni, Ravi S.; Raymond, Frank 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom., Volume 21 (1985) no. 2, pp. 231-268 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439564 | Zbl 0563.57004

[27] Markus, Lawrence Cosmological models in differential geometry, University of Minnesota Press, 1963

[28] Salein, François Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 1, pp. 257-284 | Numdam | Zbl 0951.53047

[29] Smillie, John David Affinely flat manifolds, ProQuest LLC, Ann Arbor, MI, 1977 (PhD Thesis–University of Chicago)

[30] Thurston, William The Geometry and topology of 3-manifolds, Princeton University Press, 1980

[31] Wolf, Joseph A. Spaces of constant curvature, Publish or Perish Inc., Boston, Mass., 1974, pp. xv+408 | Zbl 0281.53034

[32] Zeghib, Abdelghani On closed anti-de Sitter spacetimes, Math. Ann., Volume 310 (1998) no. 4, pp. 695-716 | Zbl 0968.53049