Nous étudions le billard sur une table carrée avec un miroir vertical à une face. Nous associons les trajectoires de ces billards à des doubles rotations et étudions le comportement des orbites et des questions de complexité.
We study the billiard on a square billiard table with a one-sided vertical mirror. We associate trajectories of these billiards with double rotations and study orbit behavior and questions of complexity.
Classification : 37C35, 03B10, 68R15
Mots clés : billard polygonal, translation d’intervalles, miroir espion, complexité
@article{AIF_2015__65_5_1881_0, author = {Skripchenko, Alexandra and Troubetzkoy, Serge}, title = {Polygonal Billiards with One Sided Scattering}, journal = {Annales de l'Institut Fourier}, pages = {1881--1896}, publisher = {Association des Annales de l'institut Fourier}, volume = {65}, number = {5}, year = {2015}, doi = {10.5802/aif.2975}, language = {en}, url = {www.numdam.org/item/AIF_2015__65_5_1881_0/} }
Skripchenko, Alexandra; Troubetzkoy, Serge. Polygonal Billiards with One Sided Scattering. Annales de l'Institut Fourier, Tome 65 (2015) no. 5, pp. 1881-1896. doi : 10.5802/aif.2975. http://www.numdam.org/item/AIF_2015__65_5_1881_0/
[1] A polynomial bound for the lap number, Qual. Theory Dyn. Syst., Volume 3 (2002) no. 2, pp. 325-329 | Article | Zbl 1057.37035
[2] Interval translation mappings, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 5, pp. 821-832 | Article | Zbl 0836.58026
[3] Renormalization in a class of interval translation maps of branches, Dyn. Syst., Volume 22 (2007) no. 1, pp. 11-24 | Article | Zbl 1115.37038
[4] The Gauss map on a class of interval translation mappings, Israel J. Math., Volume 137 (2003), pp. 125-148 | Article | Zbl 1274.37005
[5] Inducing and unique ergodicity of double rotations, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 12, pp. 4133-4147 | Article | Zbl 1263.37020
[6] Piecewise monotone maps without periodic points: rigidity, measures and complexity, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 2, pp. 383-405 | Article | Zbl 1076.37022
[7] Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 3, pp. 835-847 http://aif.cedram.org/item?id=AIF_2002__52_3_835_0 | Zbl 1115.37312
[8] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 http://projecteuclid.org/euclid.bbms/1105730624 (Journées Montoises (Mons, 1994)) | Zbl 0921.68065
[9] Infinite words with uniform frequencies, and invariant measures, Combinatorics, automata and number theory (Encyclopedia Math. Appl.) Volume 135, Cambridge Univ. Press, Cambridge, 2010, pp. 373-409 | Zbl 1217.68168
[10] Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | Article | Zbl 1057.37034
[11] Interval translation mappings, Dynamical systems (Luminy-Marseille, 1998), World Sci. Publ., River Edge, NJ, 2000, pp. 291-302 | Zbl 1196.37072
[12] Double rotations, Discrete Contin. Dyn. Syst., Volume 13 (2005) no. 2, pp. 515-532 | Article | Zbl 1078.37033