Une inégalité de Cheeger pour le spectre de Steklov  [ A Cheeger inequality for the Steklov spectrum ]
Annales de l'Institut Fourier, Volume 65 (2015) no. 3, p. 1381-1385

We prove a Cheeger inequality for the first positive Steklov eigenvalue. It involves two isoperimetric constants.

On montre une inégalité de Cheeger pour la première valeur propre de Steklov. Elle fait intervenir deux constantes isopérimétriques.

DOI : https://doi.org/10.5802/aif.2960
Classification:  35P15,  58J50
Keywords: Cheeger inequality, Steklov eigenvalues.
@article{AIF_2015__65_3_1381_0,
     author = {Jammes, Pierre},
     title = {Une in\'egalit\'e de Cheeger pour le spectre de Steklov},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {65},
     number = {3},
     year = {2015},
     pages = {1381-1385},
     doi = {10.5802/aif.2960},
     language = {fr},
     url = {http://www.numdam.org/item/AIF_2015__65_3_1381_0}
}
Jammes, Pierre. Une inégalité de Cheeger pour le spectre de Steklov. Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 1381-1385. doi : 10.5802/aif.2960. http://www.numdam.org/item/AIF_2015__65_3_1381_0/

[1] Agranovich, M. S. On a mixed Poincaré-Steklov Type Spectral Problem in a Lipschitz Domain, Russ. J. Math. Phys., Tome 13 (2005) no. 3, pp. 239-244 | Article | MR 2262827 | Zbl 1162.35351

[2] Bandle, C. Isoperimetric inequalities and applications, Pitman, Monographs and Studies in Mathematics, Tome 7 (1980) | MR 572958 | Zbl 0519.53037

[3] Brooks, R. The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math., Tome 357 (1985), pp. 101-114 | MR 783536 | Zbl 0553.53027

[4] Buser, P. On Cheeger inequality λ 1 h 2 /4, Geometry of the Laplace operator, Amer. Math. Soc. (Proc. Sympos. Pure Math., XXXVI) (1980), pp. 29-77 | MR 573428 | Zbl 0432.58024

[5] Cheeger, J. A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press (1970) | MR 402831 | Zbl 0212.44903

[6] Cheng, S.-Y.; Oden, K. Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain, J. Geom. Anal., Tome 7 (1997) no. 2, pp. 217-239 | Article | MR 1646764 | Zbl 0920.58054

[7] Colbois, B.; El Soufi, A.; Girouard, A. Isoperimetric control of the Steklov spectrum, J. Funct. Anal., Tome 261 (2011) no. 5, pp. 1384-1399 | Article | MR 2807105 | Zbl 1235.58020

[8] Escobar, J. F. The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal., Tome 150 (1997) no. 2, pp. 544-556 | Article | MR 1479552 | Zbl 0888.58066

[9] Escobar, J. F. An isoperimetric Inequality and the first Steklov Eigenvalue, J. Funct. Anal., Tome 165 (1999) no. 1, pp. 101-116 | Article | MR 1696453 | Zbl 0935.58015

[10] Girouard, A.; Polterovich, I. On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues, Functional Analysis and its Applications, Tome 44 (2010) no. 2, pp. 106-117 | Article | MR 2681956 | Zbl 1217.35125

[11] Guérini, P. Prescription du spectre du laplacien de Hodge-de Rham, Ann. scient. Éc. norm. sup. (4), Tome 37 (2004) no. 2, pp. 270-303 | Numdam | MR 2061782 | Zbl 1068.58016

[12] Krantz, S. T.; Parks, H. R. Geometric Integration Theory, Birkäuser (2008) | MR 2427002 | Zbl 1149.28001

[13] Sylvester, J.; Uhlmann, G. The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989), SIAM (1990), pp. 101-139 | MR 1046433 | Zbl 0713.35100

[14] Uhlmann, G. Electrical impedance tomography and Calderón’s problem, Inverse Problems, Tome 25 (2009) no. 12, pp. 123011, 39 | Article | Zbl 1181.35339