Ultrarigid tangents of sub-Riemannian nilpotent groups
Annales de l'Institut Fourier, Volume 64 (2014) no. 6, p. 2265-2282

We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps are the translations and the dilations.

Nous montrons que pour les groupes nilpotents sous-riemanniens, le cône tangent en l’identité n’est pas un invariant quasi-conforme complet. À savoir, nous montrons qu’il existe un groupe de Lie nilpotent muni d’une métrique sous-riemannienne invariante à gauche qui n’est pas localement quasi-conformément équivalent à son cône tangent en l’identité. En particulier, ces espaces ne sont pas localement bi-Lipschitziens. Le résultat repose sur l’étude des groupes de Carnot qui sont rigides dans le sens que leurs seules applications quasi-conformes sont les translations et les dilatations.

DOI : https://doi.org/10.5802/aif.2912
Classification:  53C17,  30L10,  22E25,  26A16
Keywords: Sub-Riemannian geometry, metric tangents, Gromov-Hausdorff convergence, nilpotent groups, Carnot groups, quasiconformal maps
@article{AIF_2014__64_6_2265_0,
     author = {Le Donne, Enrico and Ottazzi, Alessandro and Warhurst, Ben},
     title = {Ultrarigid tangents of sub-Riemannian nilpotent groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {6},
     year = {2014},
     pages = {2265-2282},
     doi = {10.5802/aif.2912},
     mrnumber = {3331166},
     zbl = {06387339},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2014__64_6_2265_0}
}
Ultrarigid tangents of sub-Riemannian nilpotent groups. Annales de l'Institut Fourier, Volume 64 (2014) no. 6, pp. 2265-2282. doi : 10.5802/aif.2912. http://www.numdam.org/item/AIF_2014__64_6_2265_0/

[1] Capogna, Luca; Cowling, Michael Conformality and Q-harmonicity in Carnot groups, Duke Math. J., Tome 135 (2006) no. 3, pp. 455-479 | Article | MR 2272973 | Zbl 1106.30011

[2] Margulis, G. A.; Mostow, G. D. The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal., Tome 5 (1995) no. 2, pp. 402-433 | Article | MR 1334873 | Zbl 0910.30020

[3] Margulis, G. A.; Mostow, G. D. Some remarks on the definition of tangent cones in a Carnot-Carathéodory space, J. Anal. Math., Tome 80 (2000), pp. 299-317 | Article | MR 1771529 | Zbl 0971.58004

[4] Mitchell, John On Carnot-Carathéodory metrics, J. Differential Geom., Tome 21 (1985) no. 1, pp. 35-45 http://projecteuclid.org/euclid.jdg/1214439462 | MR 806700 | Zbl 0554.53023

[5] Ottazzi, Alessandro; Warhurst, Ben Contact and 1-quasiconformal maps on Carnot groups, J. Lie Theory, Tome 21 (2011) no. 4, pp. 787-811 | MR 2917692 | Zbl 1254.22006

[6] Pansu, Pierre Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems, Tome 3 (1983) no. 3, pp. 415-445 | Article | MR 741395 | Zbl 0509.53040

[7] Pansu, Pierre Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Tome 129 (1989) no. 1, pp. 1-60 | Article | MR 979599 | Zbl 0678.53042

[8] Shalom, Yehuda Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Tome 192 (2004) no. 2, pp. 119-185 | Article | MR 2096453 | Zbl 1064.43004

[9] Tanaka, Noboru On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., Tome 10 (1970), pp. 1-82 | MR 266258 | Zbl 0206.50503

[10] Varčenko, A. N. Obstructions to local equivalence of distributions, Mat. Zametki, Tome 29 (1981) no. 6, p. 939-947, 957 | MR 625098 | Zbl 0471.58004

[11] Warhurst, Ben Contact and Pansu differentiable maps on Carnot groups, Bull. Aust. Math. Soc., Tome 77 (2008) no. 3, pp. 495-507 | Article | MR 2454980 | Zbl 1152.22008

[12] Yamaguchi, Keizo Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Math. Soc. Japan, Tokyo (Adv. Stud. Pure Math.) Tome 22 (1993), pp. 413-494 | MR 1274961 | Zbl 0812.17018