Chen, Ying; Dias, Luis Renato G.; Takeuchi, Kiyoshi; Tibăr, Mihai
Invertible polynomial mappings via Newton non-degeneracy  [ Applications polynomiales inversibles et non-dégénérescence des polyèdres de Newton ]
Annales de l'institut Fourier, Tome 64 (2014) no. 5 , p. 1807-1822
MR 3330924 | Zbl 06387324
doi : 10.5802/aif.2897
URL stable : http://www.numdam.org/item?id=AIF_2014__64_5_1807_0

Classification:  14D06,  58K05,  57R45,  14P10,  32S20,  58K15
Mots clés: applications polynomiales réelles ou complexes, ensemble de bifurcation, problème Jacobien, polyèdre de Newton, regularité à l’infini
On démontre une condition suffisante pour le problème Jacobien dans le contexte des applications polynomiales réelles, complexes ou mixtes. Ceci résulte de l’étude de l’ensemble de bifurcation d’une application soumise à une nouvelle condition de non-dégénérescence par rapport aux polyèdres de Newton à l’infini.
We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.

Bibliographie

[1] Białynicki-Birula, Andrzej; Rosenlicht, Maxwell Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc., 13 (1962), p. 200–203 Article  MR 140516 | Zbl 0107.14602

[2] Bivià-Ausina, Carles Injectivity of real polynomial maps and Łojasiewicz exponents at infinity, Math. Z., 257 (2007) no. 4, p. 745–767 Article  MR 2342551 | Zbl 1183.14076

[3] Broughton, S. A. On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) 40 (1983), p. 167–178 MR 713056 | Zbl 0526.14010

[4] Broughton, S. A. Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 92 (1988) no. 2, p. 217–241 Article  MR 936081 | Zbl 0658.32005

[5] Chen, Ying; Dias, L. R. G.; Tibăr, M. On Newton non-degeneracy of polynomial mappings (arXiv:1207.1612)

[6] Chen, Ying; Tibăr, Mihai Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., 19 (2012) no. 1, p. 59–79 Article  MR 2923176 | Zbl 1274.14006

[7] Cynk, Sławomir; Rusek, Kamil Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math., 56 (1991) no. 1, p. 29–35 MR 1145567 | Zbl 0761.14005

[8] Dias, L. R. G.; Ruas, M. A. S.; Tibăr, M. Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol., 5 (2012) no. 2, p. 323–340 Article  MR 2928079 | Zbl 1248.14014

[9] Durfee, Alan H. Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996), Birkhäuser, Basel (Progr. Math.) 162 (1998), p. 345–360 MR 1652481 | Zbl 0919.32021

[10] Van Den Essen, Arno Polynomial automorphisms and the Jacobian conjecture, Birkhäuser Verlag, Basel, Progress in Mathematics, 190 (2000), p. xviii+329 Article  Zbl 0962.14037

[11] Esterov, Alexander; Takeuchi, Kiyoshi Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN (2012) no. 15, p. 3567–3613 Article  MR 2959042 | Zbl 1250.32025

[12] Gaffney, Terence Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math., 119 (1999) no. 2, p. 157–167 Article  MR 1723126 | Zbl 0945.32013

[13] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) no. 20, p. 259 Numdam | MR 219538 | Zbl 0135.39701

[14] Hà, H. V.; Lê, D. T. Sur la topologie des polynômes complexes, Acta Math. Vietnam, 9 (1984) no. 1, p. 21–32 Zbl 0597.32005

[15] Jelonek, Zbigniew Testing sets for properness of polynomial mappings, Math. Ann., 315 (1999) no. 1, p. 1–35 Article  MR 1717542 | Zbl 0946.14039

[16] Jelonek, Zbigniew On asymptotic critical values and the Rabier theorem, Geometric singularity theory, Polish Acad. Sci., Warsaw (Banach Center Publ.) 65 (2004), p. 125–133 Article  MR 2104342 | Zbl 1160.58311

[17] Kurdyka, K.; Orro, P.; Simon, S. Semialgebraic Sard theorem for generalized critical values, J. Differential Geom., 56 (2000) no. 1, p. 67–92 MR 1863021 | Zbl 1067.58031

[18] Kushnirenko, A. Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), p. 1–31 Article  Zbl 0328.32007

[19] Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., 268 (2011) no. 1-2, p. 409–439 Article  MR 2805442 | Zbl 1264.14005

[20] Némethi, András; Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., 26 (1990) no. 4, p. 681–689 Article  MR 1081511 | Zbl 0736.32024

[21] Némethi, András; Zaharia, Alexandru Milnor fibration at infinity, Indag. Math. (N.S.), 3 (1992) no. 3, p. 323–335 Article  MR 1186741 | Zbl 0806.57021

[22] Nguyen, T. T. Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J., 36 (2013) no. 1, p. 77–90 Article  MR 3043400 | Zbl 1266.32036

[23] Oka, Mutsuo Non-degenerate complete intersection singularity, Hermann, Paris, Actualités Mathématiques. [Current Mathematical Topics] (1997), p. viii+309 MR 1483897 | Zbl 0930.14034

[24] Oka, Mutsuo Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 31 (2008) no. 2, p. 163–182 Article  MR 2435890 | Zbl 1149.14031

[25] Oka, Mutsuo Non-degenerate mixed functions, Kodai Math. J., 33 (2010) no. 1, p. 1–62 Article  MR 2732230 | Zbl 1195.14061

[26] Parusiński, Adam On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math., 97 (1995) no. 3, p. 369–384 Numdam | MR 1353280 | Zbl 0840.32007

[27] Pinchuk, Sergey A counterexample to the strong real Jacobian conjecture, Math. Z., 217 (1994) no. 1, p. 1–4 Article  MR 1292168 | Zbl 0874.26008

[28] Rabier, Patrick J. Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2), 146 (1997) no. 3, p. 647–691 Article  MR 1491449 | Zbl 0919.58003

[29] Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles, Duke Math. J., 80 (1995) no. 3, p. 771–783 Article  MR 1370115 | Zbl 0871.32024

[30] Suzuki, Masakazu Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace C 2 , J. Math. Soc. Japan, 26 (1974), p. 241–257 Article  MR 338423 | Zbl 0276.14001

[31] Tibăr, Mihai Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) 263 (1999), p. xx, 249–264 MR 1709356 | Zbl 0930.58005

[32] Tibăr, Mihai Polynomials and vanishing cycles, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, 170 (2007), p. xii+253 Article  MR 2360234 | Zbl 1126.32026

[33] Tibăr, Mihai; Zaharia, Alexandru Asymptotic behaviour of families of real curves, Manuscripta Math., 99 (1999) no. 3, p. 383–393 Article  MR 1702581 | Zbl 0965.14012

[34] Verdier, Jean-Louis Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., 36 (1976), p. 295–312 Article  MR 481096 | Zbl 0333.32010