[Un obstacle à la dimension ]
Let be any group containing an infinite elementary amenable subgroup and let . We construct an exhaustion of by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to -dimension and gives an answer to a question of Gaboriau.
Soit un groupe contenant un sous-groupe infini élémentairement moyennable et soit . Nous construisons des sous--modules fermés de d’union croissante dense mais qui rencontrent trivialement un sous-module fermé non trivial. Ce phénomène est un obstacle à la quête d’une dimension et répond à une question de Gaboriau.
Keywords: $\ell ^p$-dimension, abstract harmonic analysis
Mots-clés : dimension $\ell ^p$, analyse harmonique abstraite
Monod, Nicolas 1 ; Petersen, Henrik Densing 2
@article{AIF_2014__64_4_1363_0,
author = {Monod, Nicolas and Petersen, Henrik Densing},
title = {An obstruction to $\ell ^{p}$-dimension},
journal = {Annales de l'Institut Fourier},
pages = {1363--1371},
year = {2014},
publisher = {Association des Annales de l'Institut Fourier},
volume = {64},
number = {4},
doi = {10.5802/aif.2883},
mrnumber = {3329666},
zbl = {1309.43001},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.2883/}
}
TY - JOUR
AU - Monod, Nicolas
AU - Petersen, Henrik Densing
TI - An obstruction to $\ell ^{p}$-dimension
JO - Annales de l'Institut Fourier
PY - 2014
SP - 1363
EP - 1371
VL - 64
IS - 4
PB - Association des Annales de l'Institut Fourier
UR - https://www.numdam.org/articles/10.5802/aif.2883/
DO - 10.5802/aif.2883
LA - en
ID - AIF_2014__64_4_1363_0
ER -
%0 Journal Article
%A Monod, Nicolas
%A Petersen, Henrik Densing
%T An obstruction to $\ell ^{p}$-dimension
%J Annales de l'Institut Fourier
%D 2014
%P 1363-1371
%V 64
%N 4
%I Association des Annales de l'Institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2883/
%R 10.5802/aif.2883
%G en
%F AIF_2014__64_4_1363_0
Monod, Nicolas; Petersen, Henrik Densing. An obstruction to $\ell ^{p}$-dimension. Annales de l'Institut Fourier, Tome 64 (2014) no. 4, pp. 1363-1371. doi: 10.5802/aif.2883
[1] -cohomology and group cohomology, Topology, Volume 25 (1986) no. 2, pp. 189-215 | DOI | Zbl | MR
[2] Elementary amenable groups, Illinois J. Math., Volume 24 (1980) no. 3, pp. 396-407 http://projecteuclid.org/euclid.ijm/1256047608 | Zbl | MR
[3] Solvability of groups of odd order, Pacific J. Math., Volume 13 (1963), pp. 775-1029 | DOI | Zbl | MR
[4] Invariants de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. (2002) no. 95, pp. 93-150 | DOI | Numdam | Zbl | MR | EuDML
[5] A dynamical approach to von Neumann dimension, Discrete Contin. Dyn. Syst., Volume 26 (2010) no. 3, pp. 967-987 | DOI | Zbl | MR
[6] Further properties of dimension, J. Funct. Anal., Volume 266 (2014) no. 2, pp. 487-513 | DOI | MR | Zbl
[7] A property of locally finite groups, J. London Math. Soc., Volume 39 (1964), pp. 235-239 | DOI | Zbl | MR
[8] An -version of von Neumann dimension for Banach space representations of sofic groups II (Preprint, arXiv:1302.2286v2) | Zbl
[9] An -version of von Neumann dimension for Banach space representations of sofic groups, J. Funct. Anal., Volume 266 (2014) no. 2, pp. 989-1040 | DOI | MR | Zbl
[10] Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963, pp. viii+519 | Zbl | MR
[11] On rings of operators, Ann. of Math. (2), Volume 37 (1936) no. 1, pp. 116-229 | DOI | Zbl | MR
[12] -cohomology of symmetric spaces, Geometry, analysis and topology of discrete groups (Adv. Lect. Math. (ALM)), Volume 6, Int. Press, Somerville, MA, 2008, pp. 305-326 | Zbl | MR
[13] Zero divisors and , Proc. Amer. Math. Soc., Volume 126 (1998) no. 3, pp. 721-728 | DOI | Zbl | MR
[14] On convolution squares of singular measures, Illinois J. Math., Volume 24 (1980) no. 2, pp. 225-232 http://projecteuclid.org/euclid.ijm/1256047718 | Zbl | MR
[15] -Betti numbers of discrete measured groupoids, Internat. J. Algebra Comput., Volume 15 (2005) no. 5-6, pp. 1169-1188 | DOI | Zbl | MR
[16] Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270 | DOI | Zbl | MR
Cité par Sources :





