Amenable, transitive and faithful actions of groups acting on trees  [ Actions moyennables, transitives et fidèles de groupes agissant sur un arbre ]
Annales de l'Institut Fourier, Tome 64 (2014) no. 1, p. 1-17
Nous étudions sous quelles conditions un produit libre amalgamé ou une extension HNN sur un sous groupe fini admet une action moyennable, transitive et fidèle sur un espace dénombrable. Nous montrons qu’une telle action existe lorsque les groupes initiaux admettent une action moyennable et presque libre à orbites infinies (e.g. les groupes virtuellement libres ou moyennables infinis). Notre résultat s’appuie sur le théorème de Baire. Nous étendons ce résultat aux groupes agissant sur un arbre.
We study under which condition an amalgamated free product or an HNN-extension over a finite subgroup admits an amenable, transitive and faithful action on an infinite countable set. We show that such an action exists if the initial groups admit an amenable and almost free action with infinite orbits (e.g. virtually free groups or infinite amenable groups). Our result relies on the Baire category Theorem. We extend the result to groups acting on trees.
DOI : https://doi.org/10.5802/aif.2837
Classification:  43A07,  20E06,  57M07
Mots clés: actions moyennable, produit libre, extension HNN, groupes agissant sur un arbre
@article{AIF_2014__64_1_1_0,
     author = {Fima, Pierre},
     title = {Amenable, transitive and faithful actions of groups acting on trees},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {1},
     year = {2014},
     pages = {1-17},
     doi = {10.5802/aif.2837},
     zbl = {1315.43001},
     mrnumber = {3330539},
     zbl = {06387264},
     language = {en},
     url = {http://http://www.numdam.org/item/AIF_2014__64_1_1_0}
}
Fima, Pierre. Amenable, transitive and faithful actions of groups acting on trees. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 1-17. doi : 10.5802/aif.2837. http://www.numdam.org/item/AIF_2014__64_1_1_0/

[1] Dixon, J. D. Most finitely generated permutation groups are free, Bull. London Math. Soc., Tome 22 (1990) no. 3, pp. 222-226 | Article | MR 1041134 | Zbl 0675.20003

[2] Epstein, D. B. A. Almost all subgroups of a Lie group are free, J. Algebra, Tome 19 (1971), p. 261-262 | Article | MR 281776 | Zbl 0222.22012

[3] Glasner, Y.; Monod, N. Amenable action, free products and a fixed point property, Bull. Lond. Math. Soc., Tome 39 (2007) no. 1, pp. 138-150 | Article | MR 2303529 | Zbl 1207.43002

[4] Greenleaf, F. P. Invariant means on topological groups and their applications, Van Nostrand Reinhold Co., New York, Van Nostrand Mathematical Studies, Tome 16 (1969) | MR 251549 | Zbl 0174.19001

[5] Grigorchuk, R.; Nekrashevych, V. Amenable actions of non amenable groups, Zap. Nauchn. Sem. S.-Peterburg Otdel. Math. Inst. Steklov (POMI), Tome 326 (2005), pp. 85-96 | MR 2183217 | Zbl 1127.43001

[6] Monod, N.; Popa, S. On co-amenability for groups and von Neumann algebras, C. R. Math. Acad. Sci. Soc. R. Can., Tome 25 (2003) no. 3, pp. 82-87 | MR 1999183 | Zbl 1040.43001

[7] Moon, S. Amenable actions of amalgamated free products, Groups, Geometry and Dynamics, Tome 4 (2010) no. 2, pp. 309-332 | Article | MR 2595094 | Zbl 1193.43001

[8] Moon, S. Amenable actions of amalgamated free products of free groups over a cyclic subgroup and generic property, Ann. Math. Blaise Pascal, Tome 18 (2011) no. 2, pp. 217-235 | Article | Numdam | MR 2896486 | Zbl 1246.43002

[9] Moon, S. Permanent properties of amenable, transitive and faithful actions, Bull. Belgian Math. Soc. Simon Stevin, Tome 18 (2011) no. 2, pp. 287-296 | MR 2848804 | Zbl 1221.43002

[10] Serre, J.-P. Arbres, amalgames, SL 2 , Astérisque, Tome 46 (1983) | Zbl 0369.20013

[11] Van Douwen, E. K. Measures invariant under actions of 𝔽 2 , Topology Appl., Tome 34 (1990) no. 1, pp. 53-68 | Article | MR 1035460 | Zbl 0701.43001

[12] Von Neumann, J. Zusatz zur Arbeit “Zur allgemeinen Theorie des Masses”, Fund. Math., Tome 13 (1929), pp. 73-116

[13] Zimmer, R. J. Ergodic theory and semisimple groups,, Birkhäuser, Basel (1984) | MR 776417 | Zbl 0571.58015