Béthuel, Fabrice; Gravejat, Philippe; Smets, Didier
Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation  [ Stabilité dans l’espace d’énergie pour les chaînes de solitons de l’équation de Gross-Pitaevskii en dimension un ]
Annales de l'institut Fourier, Tome 64 (2014) no. 1 , p. 19-70
MR 3330540 | Zbl 06387265 | 1 citation dans Numdam
doi : 10.5802/aif.2838
URL stable : http://www.numdam.org/item?id=AIF_2014__64_1_19_0

Classification:  35B35,  35Q51,  35Q55
Mots clés: Équation de Gross-Pitaevskii, sommes de solitons, stabilité
Nous démontrons en dimension un la stabilité dans l’espace d’énergie des sommes de solitons de l’équation de Gross-Pitaevskii, dont les vitesses sont non nulles et deux-à-deux distinctes, et dont les positions initiales sont suffisamment espacées et ordonnées selon les vitesses des solitons.
We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.

Bibliographie

[1] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Farina, A.; Saut, J.-C. Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations, Amer. Math. Soc., Providence, RI (Contemp. Math.) 473 (2008), p. 55-104 MR 2522014 | Zbl 1216.35132

[2] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J, 57 (2008) no. 6, p. 2611-2642 Article  MR 2482993 | Zbl 1171.35012

[3] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not., 2009 (2009) no. 14, p. 2700-2748 MR 2520771 | Zbl 1183.35240

[4] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II, Comm. Partial Differential Equations, 35 (2010) no. 1, p. 113-164 Article  MR 2748620 | Zbl 1213.35367

[5] Chiron, D. Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, 25 (2012) no. 3, p. 813-850 Article  MR 2887994 | Zbl 1278.35226

[6] Chiron, D.; Rousset, F. The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal., 42 (2010) no. 1, p. 64-96 Article  MR 2596546 | Zbl 1210.35229

[7] Dunford, N.; Schwartz, J.T. Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space, Interscience Publishers, John Wiley and Sons, New York-London-Sydney, Pure and Applied Mathematics, 7 (1963) (With the assistance of W.G. Bade and R.G. Bartle) MR 188745 | Zbl 0635.47002

[8] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian methods in the theory of solitons, Springer-Verlag, Berlin-Heidelberg-New York, Classics in Mathematics (2007) (Translated by A.G. Reyman) MR 2348643 | Zbl 1111.37001

[9] Gallo, C. Schrödinger group on Zhidkov spaces, Adv. Differential Equations, 9 (2004) no. 5-6, p. 509-538 MR 2099970 | Zbl 1103.35093

[10] Gérard, P. The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 23 (2006) no. 5, p. 765-779 Article  Zbl 1122.35133

[11] Gérard, P.; Zhang, Z. Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., 91 (2009) no. 2, p. 178-210 Article  MR 2498754 | Zbl 1232.35152

[12] Grillakis, M.; Shatah, J.; Strauss, W.A. Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987) no. 1, p. 160-197 Article  MR 901236 | Zbl 0656.35122

[13] Lin, Z. Stability and instability of traveling solitonic bubbles, Adv. Differential Equations, 7 (2002) no. 8, p. 897-918 MR 1895111 | Zbl 1033.35117

[14] Martel, Y.; Merle, F. Stability of two soliton collision for nonintegrable gKdV equations, Commun. Math. Phys., 286 (2009) no. 1, p. 39-79 Article  MR 2470923 | Zbl 1179.35291

[15] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., 183 (2011) no. 3, p. 563-648 Article  MR 2772088 | Zbl 1230.35121

[16] Martel, Y.; Merle, F.; Tsai, T.-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., 231 (2002) no. 2, p. 347-373 Article  MR 1946336 | Zbl 1017.35098

[17] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006) no. 3, p. 405-466 Article  MR 2228459 | Zbl 1099.35134

[18] Miura, R.M. The Korteweg- de Vries equation: a survey of results, SIAM Rev., 18 (1976) no. 3, p. 412-459 Article  MR 404890 | Zbl 0333.35021

[19] Tartousi, H.M. (PhD thesis In preparation)

[20] Vartanian, A.H. Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua, Math. Phys. Anal. Geom., 5 (2002) no. 4, p. 319-413 Article  MR 1942685 | Zbl 1080.35060

[21] Zakharov, V.E.; Shabat, A.B. Interaction between solitons in a stable medium, Sov. Phys. JETP, 37 (1973), p. 823-828

[22] Zhidkov, P.E. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, Springer-Verlag, Berlin, Lecture Notes in Mathematics, 1756 (2001) MR 1831831 | Zbl 0987.35001