Apostolov, Apostol
Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected  [ L’espace de modules de variétés symplectiques irréductibles polarisées n’est pas nécessairement connexe ]
Annales de l'institut Fourier, Tome 64 (2014) no. 1 , p. 189-202
MR 3330546 | Zbl 06387271
doi : 10.5802/aif.2844
URL stable : http://www.numdam.org/item?id=AIF_2014__64_1_189_0

Classification:  14J10,  14J40,  32J27
Mots clés: nombre de composantes connexes, invariant de monodromie, variétés symplectiques irréductibles
Nous montrons que l’espace de modules des variétés symplectiques irréductibles polarisées de type K3 [n] , le type de polarisation étant fixé, n’est pas nécessairement connexe. Cela peut être obtenu comme une conséquence de la caractérisation de Markman des opérateurs de transport parallèle polarisé de type K3 [n] .
We show that the moduli space of polarized irreducible symplectic manifolds of K3 [n] -type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of K3 [n] -type.

Bibliographie

[1] Beauville, Arnaud Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom., 18 (1983) no. 4, p. 755–782 (1984) MR 730926 | Zbl 0537.53056

[2] Bogomolov, F. On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb., 22 (1974), p. 580–583 Article  MR 338459 | Zbl 0304.32016

[3] Gritsenko, V.; Hulek, K.; Sankaran, G. K. Moduli of K3 surfaces and Irreducible Symplectic Manifolds (2010) (arXiv:math/10124155v1)

[4] Gritsenko, V.; Hulek, K.; Sankaran, G. K. Moduli spaces of irreducible symplectic manifolds, Compos. Math., 146 (2010) no. 2, p. 404–434 Article  MR 2601632 | Zbl 1230.14051

[5] Huybrechts, Daniel Compact hyper-Kähler manifolds: basic results, Invent. Math., 135 (1999) no. 1, p. 63–113 Article  MR 1664696 | Zbl 0953.53031

[6] Huybrechts, Daniel Moduli spaces of hyperkähler manifolds and mirror symmetry, Intersection theory and moduli, Abdus Salam Int. Cent. Theoret. Phys., Trieste (ICTP Lect. Notes, XIX) (2004), p. 185–247 (electronic) MR 2172498 | Zbl 1110.53034

[7] Markman, Eyal Faithful Monodromy Invariant for Polarized Irreducible Symplectic Manifolds of K3 [n] -type (2010) (an unpublished note)

[8] Markman, Eyal A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry, Springer, Heidelberg (Springer Proc. Math.) 8 (2011), p. 257–322 Article  MR 2964480 | Zbl 1229.14009

[9] Markman, Eyal Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math., 53 (2013) no. 2, p. 345–403 Article  MR 3079308 | Zbl 1271.14016

[10] Mukai, S. On the moduli space of bundles on K3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res., Bombay (Tata Inst. Fund. Res. Stud. Math.) 11 (1987), p. 341–413 MR 893604 | Zbl 0674.14023

[11] Nikulin, V. V. Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), p. 111–177 (Moscow) MR 525944 | Zbl 0408.10011

[12] O’Grady, Kieran G. Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math., 512 (1999), p. 49–117 Article  MR 1703077 | Zbl 0928.14029

[13] O’Grady, Kieran G. A new six-dimensional irreducible symplectic variety, J. Algebraic Geom., 12 (2003) no. 3, p. 435–505 Article  MR 1966024 | Zbl 1068.53058

[14] Serre, Jean-Pierre Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble, 6 (1955–1956), p. 1–42 Article  Numdam | MR 82175 | Zbl 0075.30401

[15] Verbitsky, M. A global Torelli theorem for hyperkähler manifolds (2010) (preprint, arXiv:math/09084121v6)

[16] Viehweg, Eckart Quasi-projective moduli for polarized manifolds, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 30 (1995), p. viii+320 MR 1368632 | Zbl 0844.14004