Bayer-Fluckiger, Eva
Embeddings of maximal tori in orthogonal groups  [ Plongements de tores maximaux dans des groupes orthogonaux ]
Annales de l'institut Fourier, Tome 64 (2014) no. 1 , p. 113-125
MR 3330542 | Zbl 06387267
doi : 10.5802/aif.2840
URL stable : http://www.numdam.org/item?id=AIF_2014__64_1_113_0

Classification:  11E57,  11E12,  20G30
Mots clés: groupes orthogonaux, tores maximaux
Nous donnons des conditions nécessaires et suffisantes pour qu’un groupe orthogonal défini sur un corps global de caractéristique 2 contienne un tore maximal d’un type donné.
We give necessary and sufficient conditions for an orthogonal group defined over a global field of characteristic 2 to contain a maximal torus of a given type.

Bibliographie

[1] Brusamarello, Rosali; Chuard-Koulmann, Pascale; Morales, Jorge Orthogonal groups containing a given maximal torus, J. Algebra, 266 (2003) no. 1, p. 87–101 Article  MR 1994530 | Zbl 1079.11023

[2] Fiori, Andrew Characterization of special points of orthogonal symmetric spaces, J. Algebra, 372 (2012), p. 397–419 Article  MR 2990017 | Zbl pre06180116

[3] Garibaldi, S.; Rapinchuk, A. Weakly commensurable S-arithmetic subgroups in almost simple algebraic groups of types B and C (Algebra and Number Theory, to appear) Zbl 1285.20045

[4] Gille, P. Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc., 19 (2004) no. 3, p. 213–230 MR 2139505 | Zbl 1193.20057

[5] Lee, T-Y. Embedding functors and their arithmetic properties (Comment. Math. Helv, to appear)

[6] Milne, J. Complex Multiplication (http://www.jmilne.org/math/CourseNotes/cm)

[7] Milnor, John On isometries of inner product spaces, Invent. Math., 8 (1969), p. 83–97 Article  MR 249519 | Zbl 0177.05204

[8] O’Meara, O. Timothy Introduction to quadratic forms, Springer-Verlag, Berlin, Classics in Mathematics (2000), p. xiv+342 (Reprint of the 1973 edition) MR 1754311 | Zbl 1034.11003

[9] Prasad, Gopal; Rapinchuk, Andrei S. Local-global principles for embedding of fields with involution into simple algebras with involution, Comment. Math. Helv., 85 (2010) no. 3, p. 583–645 Article  MR 2653693 | Zbl 1223.11047

[10] Scharlau, Winfried Quadratic and Hermitian forms, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 270 (1985), p. x+421 MR 770063 | Zbl 0584.10010