Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case
Annales de l'Institut Fourier, Volume 63 (2013) no. 3, p. 923-956

We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.

Nous déterminons l’homologie et la cohomologie de Hochschild des algèbres de Weyl généralisées de rang un dans le cas quantique sauf dans quelques cas exceptionnels.

DOI : https://doi.org/10.5802/aif.2780
Classification:  16E40,  16E65,  16U80,  16W50,  16W70
Keywords: generalized Weyl algebra, Hochschild cohomology, global dimension,
@article{AIF_2013__63_3_923_0,
     author = {Solotar, Andrea and Su\'arez-Alvarez, Mariano and Vivas, Quimey},
     title = {Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {63},
     number = {3},
     year = {2013},
     pages = {923-956},
     doi = {10.5802/aif.2780},
     mrnumber = {3137476},
     zbl = {1294.16007},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2013__63_3_923_0}
}
Solotar, Andrea; Suárez-Alvarez, Mariano; Vivas, Quimey. Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case. Annales de l'Institut Fourier, Volume 63 (2013) no. 3, pp. 923-956. doi : 10.5802/aif.2780. http://www.numdam.org/item/AIF_2013__63_3_923_0/

[1] Avramov, Luchezar L.; Iyengar, Srikanth Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett., Tome 12 (2005) no. 5-6, pp. 789-804 | Article | MR 2189239 | Zbl 1101.13018

[2] Avramov, Luchezar L.; Vigué-Poirrier, Micheline Hochschild homology criteria for smoothness, Internat. Math. Res. Notices (1992) no. 1, pp. 17-25 | Article | MR 1149001 | Zbl 0755.13006

[3] Bach A Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv., Tome 69 (1994) no. 2, pp. 163-168 | MR 1282365 | Zbl 0824.13009

[4] Bavula, V. V. Generalized Weyl algebras and their representations, Algebra i Analiz, Tome 4 (1992) no. 1, pp. 75-97 | MR 1171955 | Zbl 0807.16027

[5] Bavula, Vladimir Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994), Amer. Math. Soc., Providence, RI (CMS Conf. Proc.) Tome 18 (1996), pp. 81-107 | MR 1388045 | Zbl 0857.16025

[6] Bergh, Petter Andreas; Erdmann, Karin Homology and cohomology of quantum complete intersections, Algebra Number Theory, Tome 2 (2008) no. 5, pp. 501-522 | Article | MR 2429451 | Zbl 1205.16011

[7] Bergh, Petter Andreas; Madsen, Dag Hochschild homology and global dimension, Bull. Lond. Math. Soc., Tome 41 (2009) no. 3, pp. 473-482 | Article | MR 2506831 | Zbl 1207.16006

[8] Buchweitz, Ragnar-Olaf; Green, Edward L.; Madsen, Dag; Solberg, Øyvind Finite Hochschild cohomology without finite global dimension, Math. Res. Lett., Tome 12 (2005) no. 5-6, pp. 805-816 | Article | MR 2189240 | Zbl 1138.16003

[9] Farinati, M. A.; Solotar, A.; Suárez-Álvarez, M. Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble), Tome 53 (2003) no. 2, pp. 465-488 http://aif.cedram.org/item?id=AIF_2003__53_2_465_0 | Article | Numdam | MR 1990004 | Zbl 1100.16008

[10] Han, Yang Hochschild (co)homology dimension, J. London Math. Soc. (2), Tome 73 (2006) no. 3, pp. 657-668 | Article | MR 2241972 | Zbl 1139.16010

[11] Happel, Dieter Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Springer, Berlin (Lecture Notes in Math.) Tome 1404 (1989), pp. 108-126 | MR 1035222 | Zbl 0688.16033

[12] Hochschild, G.; Kostant, Bertram; Rosenberg, Alex Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Tome 102 (1962), pp. 383-408 | Article | MR 142598 | Zbl 0102.27701

[13] Richard, Lionel; Solotar, Andrea Isomorphisms between quantum generalized Weyl algebras, J. Algebra Appl., Tome 5 (2006) no. 3, pp. 271-285 | Article | MR 2235811 | Zbl 1102.16025

[14] Rodicio, Antonio G. Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv., Tome 65 (1990) no. 3, pp. 474-477 | Article | MR 1069822 | Zbl 0726.13008

[15] Rodicio, Antonio G. Commutative augmented algebras with two vanishing homology modules, Adv. Math., Tome 111 (1995) no. 1, pp. 162-165 | Article | MR 1317386 | Zbl 0830.13011

[16] Smith, S. P. A class of algebras similar to the enveloping algebra of sl (2), Trans. Amer. Math. Soc., Tome 322 (1990) no. 1, pp. 285-314 | Article | MR 972706 | Zbl 0732.16019

[17] Solotar, Andrea; Vigué-Poirrier, Micheline Two classes of algebras with infinite Hochschild homology, Proc. Amer. Math. Soc., Tome 138 (2010) no. 3, pp. 861-869 | Article | MR 2566552 | Zbl 1227.16011