Flows of flowable Reeb homeomorphisms  [ Flots des homéomorphismes de Reeb flowables ]
Annales de l'Institut Fourier, Tome 62 (2012) no. 3, p. 887-897
Considérons une homéomorphisme sans points fixes sur la bande fermé B=×[0,1] qui laisse un feuilletage de Reeb invariant et qui est le temps un des flots topologiques. Nous comparons les restrictions de plusieurs tels flots au bord de B.
We consider a fixed point free homeomorphism h of the closed band B=×[0,1] which leaves each leaf of a Reeb foliation on B invariant. Assuming h is the time one of various topological flows, we compare the restriction of the flows on the boundary.
DOI : https://doi.org/10.5802/aif.2711
Classification:  37E30
Mots clés: feuilletages de Reeb, homéomorphismes, conjugaisons topologiques
@article{AIF_2012__62_3_887_0,
     author = {Matsumoto, Shigenori},
     title = {Flows of flowable Reeb homeomorphisms},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {62},
     number = {3},
     year = {2012},
     pages = {887-897},
     doi = {10.5802/aif.2711},
     zbl = {1350.37049},
     mrnumber = {3013811},
     zbl = {pre06093167},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2012__62_3_887_0}
}
Matsumoto, Shigenori. Flows of flowable Reeb homeomorphisms. Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 887-897. doi : 10.5802/aif.2711. http://www.numdam.org/item/AIF_2012__62_3_887_0/

[1] Brouwer, Lej Beweis des Ebenen Translationssatzes, Math. Ann., Tome 72 (1912) no. 1, pp. 37-54 | Article | JFM 43.0569.02 | MR 1511684

[2] Béguin, François; Le Roux, Frédéric Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb, Bull. Soc. Math. France, Tome 131 (2003) no. 2, pp. 149-210 | Numdam | MR 1988946 | Zbl 1026.37033

[3] De Kerékjártó, Béla Sur le groupe des transformations topologiques du plan, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), Tome 3 (1934) no. 3-4, pp. 393-400 | JFM 60.0521.02 | Numdam | MR 1556737 | Zbl 0010.03902

[4] Fathi, Albert An orbit closing proof of Brouwer’s lemma on translation arcs, Enseign. Math. (2), Tome 33 (1987) no. 3-4, pp. 315-322 | MR 925994 | Zbl 0649.54022

[5] Franks, John A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems, Tome 12 (1992) no. 2, pp. 217-226 | Article | MR 1176619 | Zbl 0767.58025

[6] Guillou, Lucien Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology, Tome 33 (1994) no. 2, pp. 331-351 | Article | MR 1273787 | Zbl 0924.55001

[7] Haefliger, André; Reeb, Georges Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseignement Math. (2), Tome 3 (1957), pp. 107-125 | MR 89412 | Zbl 0079.17101

[8] Homma, Tatsuo; Terasaka, Hidetaka On the structure of the plane translation of Brouwer, Osaka Math. J., Tome 5 (1953), pp. 233-266 | MR 58963 | Zbl 0050.17804 | Zbl 0051.14701

[9] Le Roux, F.; O’Farrell, A. G.; Roginskaya, M.; Short, I. Flowability of plane homeomorphisms (Preprints in Arxiv) | MR 2985511 | Zbl 1296.37032

[10] Le Roux, Frédéric Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb, C. R. Acad. Sci. Paris Sér. I Math., Tome 328 (1999) no. 1, pp. 45-50 | Article | MR 1674425 | Zbl 0922.58069

[11] Nakayama, Hiromichi A non-flowable plane homeomorphism whose non-Hausdorff set consists of two disjoint lines, Houston J. Math., Tome 21 (1995) no. 3, pp. 569-572 | MR 1352607 | Zbl 0857.54040