Representation fields for commutative orders
Annales de l'Institut Fourier, Volume 62 (2012) no. 2, p. 807-819

A representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders containing a copy of . Not every non-maximal order has a representation field. In this work we prove that every commutative order has a representation field and give a formula for it. The main result is proved for central simple algebras over arbitrary global fields.

Un corps de représentation pour un ordre non maximal dans une algèbre centrale simple est un sous-corps du corps de classes spinoriel d’ordres maximaux qui détermine l’ensemble de genres spinoriels d’ordres maximaux qui contiennent un conjugué de . Un ordre non maximal ne possède pas forcément un corps de représentation. Dans ce travail, nous montrons que chaque ordre commutatif a un corps de représentation F et nous donnons une formule pour F. Le résultat principal est prouvé pour des algèbres simples centrales sur des corps globaux arbitraires.

DOI : https://doi.org/10.5802/aif.2695
Classification:  11R52,  11R56,  11R37,  16G30,  16G10
Keywords: maximal orders, central simple algebras, spinor genera, spinor class fields
@article{AIF_2012__62_2_807_0,
     author = {Arenas-Carmona, Luis},
     title = {Representation fields for commutative orders},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {62},
     number = {2},
     year = {2012},
     pages = {807-819},
     doi = {10.5802/aif.2695},
     mrnumber = {2985517},
     zbl = {1269.11115},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2012__62_2_807_0}
}
Arenas-Carmona, Luis. Representation fields for commutative orders. Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 807-819. doi : 10.5802/aif.2695. http://www.numdam.org/item/AIF_2012__62_2_807_0/

[1] Arenas-Carmona, Luis Spinor class fields for sheaves of lattices (Preprint, arXiv:1009.3280v1 [math.NT] 16 Sep 2010)

[2] Arenas-Carmona, Luis Applications of spinor class fields: embeddings of orders and quaternionic lattices, Ann. Inst. Fourier (Grenoble), Tome 53 (2003) no. 7, pp. 2021-2038 http://aif.cedram.org/item?id=AIF_2003__53_7_2021_0 | Article | Numdam | MR 2044166

[3] Arenas-Carmona, Luis Relative spinor class fields: a counterexample, Arch. Math. (Basel), Tome 91 (2008) no. 6, pp. 486-491 | Article | MR 2465867

[4] Chevalley, C. L’arithmétique sur les algèbres de matrices, Herman, Paris (1936) | Zbl 0014.29006

[5] Chinburg, T.; Friedman, E. An embedding theorem for quaternion algebras, J. London Math. Soc., Tome 60 (1999) no. 2, pp. 33-44 | Article | MR 1721813 | Zbl 0940.11053

[6] Linowitz, B.; Shemanske, T. R. Embedding orders into central simple algebras (Preprint, arXiv:1006.3683v1 [math.NT] 18 Jun 2010)

[7] O’Meara, O. T. Introduction to quadratic forms, Academic press, New York (1963) | MR 152507 | Zbl 0107.03301

[8] Reiner, I. Maximal orders, Academic press, London (1975) | MR 1972204 | Zbl 0305.16001

[9] Shemanske, T. R. Split orders and convex polytopes in buildings, J. Number Theory, Tome 130 (2010) no. 1, pp. 101-115 | Article | MR 2569844

[10] Weil, A. Basic Number Theory, Springer Verlag, Berlin (1973) | Zbl 0267.12001