[Sur l’un des premiers problèmes de Wiles]
We study the cohomology of the group consisting of all -diffeomorphisms of the line, which are -flat to the identity at the origin. We construct non-trivial two second real cohomology classes and uncountably many second integral homology classes of this group.
On étudie la cohomologie du groupe des -difféomorphismes de la droite, qui sout -tangents à l’identité à l’origine. On construit deux classes non-triviales de cohomologie réelle de degré deux et un nombre non-dénombrable de classes d’homologie de dimension deux de ce groupe.
Keywords: cohomology of diffeomorphism groups, flat diffeomorphism, Massey product
Mots-clés : semblable banalité autosimilarité logarithmique, loi de Gauß
Ishida, Tomohiko 1
@article{AIF_2012__62_1_77_0,
author = {Ishida, Tomohiko},
title = {Second cohomology classes of the group of $C^1$-flat diffeomorphisms},
journal = {Annales de l'Institut Fourier},
pages = {77--85},
year = {2012},
publisher = {Association des Annales de l'Institut Fourier},
volume = {62},
number = {1},
doi = {10.5802/aif.2699},
zbl = {1253.58007},
mrnumber = {2986265},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.2699/}
}
TY - JOUR AU - Ishida, Tomohiko TI - Second cohomology classes of the group of $C^1$-flat diffeomorphisms JO - Annales de l'Institut Fourier PY - 2012 SP - 77 EP - 85 VL - 62 IS - 1 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2699/ DO - 10.5802/aif.2699 LA - en ID - AIF_2012__62_1_77_0 ER -
%0 Journal Article %A Ishida, Tomohiko %T Second cohomology classes of the group of $C^1$-flat diffeomorphisms %J Annales de l'Institut Fourier %D 2012 %P 77-85 %V 62 %N 1 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2699/ %R 10.5802/aif.2699 %G en %F AIF_2012__62_1_77_0
Ishida, Tomohiko. Second cohomology classes of the group of $C^1$-flat diffeomorphisms. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 77-85. doi: 10.5802/aif.2699
[1] Homologies of the group and its subgroups, J. Math. Kyoto Univ., Volume 20 (1980) no. 3, pp. 475-487 | Zbl | MR
[2] Cohomologies of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR Ser. Mat., Volume 34 (1970), pp. 322-337 | Zbl | MR
[3] The cohomologies of Lie algebras of formal vector fields on the line, Funct. Anal. and Appl., Volume 7 (1973), p. 91-97, 194–203 | DOI | Zbl
[4] Massey higher products, Trans. Amer. Math. Soc., Volume 124 (1966), pp. 431-449 | DOI | Zbl | MR
[5] Algebra of formal vector fields on the line and Buchstaber’s conjecture, Funct. Anal. Appl., Volume 43 (2009), pp. 264-278 | DOI | MR
[6] Normal forms for certain singularities of vectorfields, Ann. Inst. Fourier (Grenoble), Volume 23 (1973) no. 2, pp. 163-195 Colloque International sur l’Analyse et la Topologie Différentielle (Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1972) | DOI | Zbl | MR | Numdam
[7] Filtering bases: a tool to compute cohomologies of abstract subalgebras of the Witt algebra, Unconventional Lie algebras (Adv. Soviet Math.), Volume 17, Amer. Math. Soc., Providence, RI, 1993, pp. 155-216 | Zbl | MR
Cité par Sources :





