Landau-Ginzburg models in real mirror symmetry
Annales de l'Institut Fourier, Volume 61 (2011) no. 7, p. 2865-2883

In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.

Récemment, la symétrie miroir pour les cordes ouvertes a dévoilé de nouveaux liens entre la géométrie symplectique et énumérative (modèle A) et la géométrie algébrique complexe (modèle B) qui en un certain sens se situent entre la symétrie miroir classique et sa version homologique. On résume ici le rôle que jouent dans cette histoire les factorisations matricielles et la correspondance Calabi-Yau/Landau-Ginzburg.

DOI : https://doi.org/10.5802/aif.2796
Classification:  81T40,  14N35,  14C25
Keywords: Mirror symmetry, Landau-Ginzburg models, matrix factorizations, algebraic cycles, real enumerative geometry
@article{AIF_2011__61_7_2865_0,
     author = {Walcher, Johannes},
     title = {Landau-Ginzburg models in real mirror symmetry},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {7},
     year = {2011},
     pages = {2865-2883},
     doi = {10.5802/aif.2796},
     mrnumber = {3112510},
     zbl = {1270.81192},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2011__61_7_2865_0}
}
Walcher, Johannes. Landau-Ginzburg models in real mirror symmetry. Annales de l'Institut Fourier, Volume 61 (2011) no. 7, pp. 2865-2883. doi : 10.5802/aif.2796. http://www.numdam.org/item/AIF_2011__61_7_2865_0/

[1] Ballard, M.; Favero, D.; Katzarkov, L. A category of kernels for graded matrix factorizations and its implications for Hodge theory (arXiv:1105.3177 [math-AG])

[2] Brunner, I.; Douglas, M. R.; Lawrence, A. E.; Romelsberger, C. D-branes on the quintic, JHEP, Tome 0008 (2000), pp. 015 ([arXiv:hep-th/9906200]) | Zbl 0989.81100

[3] Brunner, I.; Herbst, M.; Lerche, W.; Scheuner, B. Landau-Ginzburg realization of open string TFT (arXiv:hep-th/0305133)

[4] Brunner, I.; Hori, K.; Hosomichi, K.; Walcher, J. Orientifolds of Gepner models, JHEP, Tome 0702 (2007), pp. 001 ([arXiv:hep-th/0401137]) | MR 2317981

[5] Buchweitz, R. O. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings (preprint, ca. 1986)

[6] Candelas, P.; De La Ossa, X. C.; Green, P. S.; Parkes, L. A Pair Of Calabi-Yau Manifolds As An Exactly Soluble Superconformal Theory, Nucl. Phys. B, Tome 359 (1991), pp. 21 | MR 1115626 | Zbl 1098.32506

[7] Chiodo, A.; Ruan, Y. Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., Tome 182 (2010), pp. 117-165 | MR 2672282 | Zbl 1197.14043

[8] Doran, B.; Kirwan, F. Towards non-reductive geometric invariant theory, Pure and applied mathematics quarterly, Tome 3 (2007), pp. 61-105 ([arXiv:math.ag/0703131]) | MR 2330155 | Zbl 1143.14039

[9] Fan, H.; Jarvis, T. J.; Ruan, Y. The Witten equation and its virtual fundamental cycle (arXiv:0712.4025 [math.AG])

[10] Fukaya, K.; Oh, Y.-G.; Ohta, H.; Ono, K. Lagrangian intersection Floer theory—anomaly and obstruction, AMS and International Press, parts I and II (2009) | Zbl 1181.53002

[11] Givental, A. B. Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996) no. 13, pp. 613-663 ([arXiv:alg-geom/9603021]) | MR 1408320 | Zbl 0881.55006

[12] Green, M. L. Infinitesimal methods in Hodge theory, Algebraic cycles and Hodge theory, Springer (Lecture Notes in Math.) Tome 1594 (1994), pp. 1-92 | MR 1335239 | Zbl 0846.14001

[13] Greene, B. R.; Plesser, M. R. Duality in Calabi-Yau moduli space, Nucl. Phys. B, Tome 338 (1990), pp. 15 | MR 1059831

[14] Greene, B. R.; Vafa, C.; Warner, N. P. Calabi-Yau Manifolds and Renormalization Group Flows, Nucl. Phys. B, Tome 324 (1989), pp. 371 | MR 1025421 | Zbl 0744.53044

[15] Herbst, M.; Hori, K.; Page, D. Phases Of N=2 Theories In 1+1 Dimensions With Boundary (arXiv:0803.2045 [hep-th])

[16] Hori, K.; Iqbal, A.; Vafa, C. D-branes and Mirror Symmetry (arXiv:hep-th/0005247)

[17] Hori, K.; Vafa, C. Mirror symmetry (arXiv:hep-th/0002222)

[18] Hori, K.; Walcher, J. D-branes from matrix factorizations. Talk at Strings ’04, June 28–July 2 2004, Paris, Comptes Rendus Physique, Tome 5 (2004), pp. 1061 ([arXiv:hep-th/0409204]) | MR 2121690

[19] Hori, K.; Walcher, J. F-term equations near Gepner points, JHEP, Tome 0501 (2005), pp. 008 ([arXiv:hep-th/0404196]) | MR 2134919

[20] Hori, K.; Walcher, J. D-brane categories for orientifolds: The Landau-Ginzburg case, JHEP, Tome 0804 (2008), pp. 030 ([arXiv:hep-th/0606179]) | MR 2425273 | Zbl 1246.81337

[21] Kapustin, A.; Li, Y. D-branes in Landau-Ginzburg models and algebraic geometry, JHEP, Tome 0312 (2003), pp. 005 ([arXiv:hep-th/0210296]) | MR 2041170

[22] Kapustin, A.; Li, Y. Topological Correlators in Landau-Ginzburg Models with Boundaries, Adv. Theor. Math. Phys., Tome 7 (2004), pp. 727 ([arXiv:hep-th/0305136]) | MR 2039036 | Zbl 1058.81061

[23] Kontsevich, M. Enumeration of rational curves via torus actions (arXiv:hep-th/9405035)

[24] Kontsevich, M. Homological algebra of mirror symmetry, Birkhäuser (Proceedings of I.C.M., (Zürich, 1994)) (1995), p. 120-139, [arXiv:math.ag/9411018] | MR 1403918 | Zbl 0846.53021

[25] Lian, B. .H.; Liu, K.; Yau, S.-T. Mirror Principle I, Surv. Differ. Geom. (1999) no. 5 ([arXiv:alg-geom/9712011]) | MR 1701925 | Zbl 0999.14010

[26] Mariño, M. Chern-Simons theory, matrix models and topological strings, Oxford University Press, Oxford, International Series of Monographs on Physics, Tome 131 (2005) | MR 2177747 | Zbl 1093.81002

[27] Morrison, D. R. Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc., Tome 6 (1993), pp. 223-247 ([arXiv:alg-geom/9202004]) | MR 1179538 | Zbl 0843.14005

[28] Morrison, D. R.; Plesser, M. R. Towards mirror symmetry as duality for two dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl., Tome 46 (1996), pp. 177 ([arXiv:hep-th/9508107]) | MR 1411471 | Zbl 0957.81656

[29] Morrison, D. R.; Walcher, J. D-branes and Normal Functions, Adv. Theor. Math. Phys., Tome 13 (2009), pp. 553-598 ([arXiv:0709.4028 [hep-th]]) | MR 2481273 | Zbl 1166.81036

[30] Orlov, D. Derived categories of coherent sheaves and triangulated categories of singularities (arXiv:math.ag/0503632) | Zbl 0996.18007

[31] Orlov, D. Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., Tome 246 (2004), pp. 227-248 ([arXiv:math.ag/0302304]) | MR 2101296 | Zbl 1101.81093

[32] Pandharipande, R.; Solomon, J.; Walcher, J. Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc., Tome 21 (2008), pp. 1169-1209 ([arXiv:math.ag/0610901]) | MR 2425184 | Zbl 1203.53086

[33] Polishchuk, A.; Vaintrob, A. Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations (arXiv:1002.2116 [math.AG]) | Zbl 1249.14001

[34] Polishchuk, A.; Vaintrob, A. Matrix factorizations and Cohomological Field Theories (arXiv:1105.2903 [math-AG])

[35] Solomon, J. Intersection Theory on the Moduli Space of Holomorphic Curves with Lagrangian Boundary Conditions, MIT Thesis (2006) (arXiv:math.sg/0606429) | MR 2717339

[36] Takahashi, A. Matrix Factorizations and Representations of Quivers I (arXiv:math.ag/0506347)

[37] Van Straten, D. Index theorem for matrix factorizations, Institute for Advanced Study, January (Talk at Workshop on Homological Mirror Symmetry and Applications I) (2007), pp. 22-26

[38] Walcher, J. Residues and Normal Functions (in preparation)

[39] Walcher, J. Stability of Landau-Ginzburg branes, J. Math. Phys., Tome 46 (2005), pp. 082305 ([arXiv:hep-th/0412274]) | MR 2165838 | Zbl 1110.81152

[40] Walcher, J. Open Strings and Extended Mirror Symmetry, Proc. BIRS Workshop Modular Forms and String Duality, June 3–8 (Fields Institute Communications) Tome 54 (2006) | Zbl 1155.14312

[41] Walcher, J. Opening mirror symmetry on the quintic, Comm. Math. Phys., Tome 276 (2007), pp. 671 ([arXiv:hep-th/0605162]) | MR 2350434 | Zbl 1135.14030

[42] Walcher, J. Extended Holomorphic Anomaly and Loop Amplitudes in Open Topological String, Nucl. Phys. B, Tome 817 (2009), pp. 167 ([arXiv:0705.4098 [hep-th]]) | MR 2522663 | Zbl 1194.81219

[43] Witten, E. Phases of N = 2 theories in two dimensions, Nucl. Phys. B, Tome 403 (1993), pp. 159 ([arXiv:hep-th/9301042]) | MR 1232617 | Zbl 0910.14020