Semi-classical functional calculus on manifolds with ends and weighted L p estimates
Annales de l'Institut Fourier, Volume 61 (2011) no. 3, pp. 1181-1223.

For a class of non compact Riemannian manifolds with ends, we give semi-classical expansions of bounded functions of the Laplacian. We then study related L p boundedness properties of these operators and show in particular that, although they are not bounded on L p in general, they are always bounded on suitable weighted L p spaces.

Pour une classe de variétés riemanniennes à bouts, nous donnons des développements semi-classiques de fonctions bornées du Laplacien. Nous étudions ensuite des propriétés de continuité L p de ces opérateurs et montrons en particulier que, bien qu’ils ne soient en général pas bornés sur L p , ils le sont toujours sur des espaces L p à poids convenables.

DOI: 10.5802/aif.2638
Classification: 58J40
Keywords: Manifold with ends, $L^p$ estimates, $h$-pseudodifferential operators
Mot clés : variété à bouts, estimations $L^p$, opérateurs $h$-pseudodifférentiels
Bouclet, Jean-Marc 1

1 Université Paul Sabatier - IMT UMR CNRS 5219 31062 Toulouse Cedex 9 (France)
@article{AIF_2011__61_3_1181_0,
     author = {Bouclet, Jean-Marc},
     title = {Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates},
     journal = {Annales de l'Institut Fourier},
     pages = {1181--1223},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {3},
     year = {2011},
     doi = {10.5802/aif.2638},
     zbl = {1236.58033},
     mrnumber = {2918727},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2638/}
}
TY  - JOUR
AU  - Bouclet, Jean-Marc
TI  - Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 1181
EP  - 1223
VL  - 61
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2638/
DO  - 10.5802/aif.2638
LA  - en
ID  - AIF_2011__61_3_1181_0
ER  - 
%0 Journal Article
%A Bouclet, Jean-Marc
%T Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates
%J Annales de l'Institut Fourier
%D 2011
%P 1181-1223
%V 61
%N 3
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2638/
%R 10.5802/aif.2638
%G en
%F AIF_2011__61_3_1181_0
Bouclet, Jean-Marc. Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates. Annales de l'Institut Fourier, Volume 61 (2011) no. 3, pp. 1181-1223. doi : 10.5802/aif.2638. http://www.numdam.org/articles/10.5802/aif.2638/

[1] Ammann, B.; Lauter, R.; Nistor, V.; Vasy, A. Complex powers and non compact manifolds, Comm. PDE, Volume 29 (2004), pp. 671-705 | DOI | MR | Zbl

[2] Beals, R. Characterization of pseudo-differential operators and applications, Duke Math. J., Volume 44 (1977) no. 1, pp. 45-57 and Correction, Duke Math. J. 46, no. 1, 215, (1979) | DOI | MR | Zbl

[3] Bony, J. M. Caractérisation des opérateurs pseudo-différentiels, Séminaire X-EDP, exp. XXIII, 1996-1997 | Numdam | MR | Zbl

[4] Bouclet, J. M. Strichartz estimates on asymptotically hyperbolic manifolds Analysis and PDE (to appear) | MR

[5] Bouclet, J. M. Littlewood-Paley decompositions on manifolds with ends, Bulletin de la SMF, Volume 138, fascicule 1 (2010), pp. 1-37 | Numdam | MR | Zbl

[6] Bouclet, J. M.; Tzvetkov, N. Strichartz estimates for long range perturbations, Amer. J. Math., Volume 129 (2007) no. 6, pp. 1565-1609 | DOI | MR | Zbl

[7] Burq, N.; Gérard, P.; Tzvetkov, N. Strichartz inequalities and the non linear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004), pp. 569-605 | DOI | MR | Zbl

[8] Cheeger, J.; Gromov, M.; Taylor, M. Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Diff. Geom., Volume 17 (1982), pp. 15-53 | MR | Zbl

[9] Clerc, J. L.; Stein, E. M. L p -multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A., Volume 71 (1974), pp. 3911-3912 | DOI | MR | Zbl

[10] Davies, E. B. Spectral theory and differential operators, Cambridge University Press, 1995 | MR | Zbl

[11] Dimassi, M.; Sjöstrand, J. Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999 | MR | Zbl

[12] Grubb, G. Functionnal calculus of pseudo-differential boundary problems, 65, Birkhäuser, Boston, 1986 | Zbl

[13] Hassel, A.; Tao, T.; Wunsch, J. A Strichartz inequality for the Schrödinger equation on non-trapping asymptotically conic manifolds, Comm. PDE, Volume 30 (2004), pp. 157-205 | DOI | MR | Zbl

[14] Helffer, B.; Robert, D. Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Analysis, Volume 53 (1983), pp. 246-268 | DOI | MR | Zbl

[15] Kordyukov, Y. A. L p estimates for functions of elliptic operators on manifolds of bounded geometry, Russian J. Math. Phys., Volume 7 (2000) no. 2, pp. 216-229 | MR | Zbl

[16] Melrose, R. B. Geometric scattering theory, Stanford lecture, Cambridge Univ. Press, 1995 | MR | Zbl

[17] Robert, D. Autour de l’approximation semi-classique, Progress in mathematics, 68, Birkhaüser, 1987 | MR | Zbl

[18] Schulze, B. W. Pseudo-differential operators on manifolds with singularities, North-Holland, Amsterdam, 1991 | MR | Zbl

[19] Seeley, R. T. Complex powers of an elliptic operator, Proc. Symp. in Pure Math., Volume 10 (1967), pp. 288-307 | MR | Zbl

[20] Seeley, R. T. The resolvent of an elliptic boundary problem, Amer. J. Math., Volume 91 (1969), pp. 889-920 | DOI | MR | Zbl

[21] Stein, E.M. Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970 | MR | Zbl

[22] Taylor, M. L p estimates on functions of the Laplace operator, Duke Math. J., Volume 58 (1989) no. 3, pp. 773-793 | DOI | MR | Zbl

[23] Taylor, M. Partial Differential Equations II, Linear Equations, Appl. Math. Sci., 116, Springer, 1996 | MR | Zbl

[24] Taylor, M. Partial Differential Equations III, Nonlinear Equations, Appl. Math. Sci., 117, Springer, 1996 | MR | Zbl

Cited by Sources: