Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces
Annales de l'Institut Fourier, Volume 61 (2011) no. 3, p. 1133-1179

In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective 4-space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.

Dans cet article nous présentons une méthode pour calculer le rang d’une courbe elliptique générale sur le corps des fonctions rationnelles de deux variables. Nous réduisons ce problème au calcul de la cohomologie d’une hypersurface singulière dans un espace projectif pondéré de dimension quatre. Nous donnons alors une méthode de calcul de la cohomologie d’une certaine classe d’hypersurfaces singulières en étendant le travail de Dimca dans le cas des singularités isolées.

DOI : https://doi.org/10.5802/aif.2637
Classification:  14J30,  14J70,  32S20,  32S35,  32S50
Keywords: Mordel-Weil group of Elliptic threefolds, Cohomology of singular varieties, Mixed Hodge structures
@article{AIF_2011__61_3_1133_0,
     author = {Hulek, Klaus and Kloosterman, Remke},
     title = {Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {3},
     year = {2011},
     pages = {1133-1179},
     doi = {10.5802/aif.2637},
     mrnumber = {2918726},
     zbl = {1246.14057},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2011__61_3_1133_0}
}
Hulek, Klaus; Kloosterman, Remke. Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces. Annales de l'Institut Fourier, Volume 61 (2011) no. 3, pp. 1133-1179. doi : 10.5802/aif.2637. http://www.numdam.org/item/AIF_2011__61_3_1133_0/

[1] Batyrev, V. V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., Tome 3 (1994), pp. 493-535 | MR 1269718 | Zbl 0829.14023

[2] Behrens, N. Calabi-Yau 3-Varietäten mit elliptischen Faserungen über Del Pezzo-Flächen, Diplomarbeit, Leibniz Universität Hannover, Hannover (2006)

[3] Clemens, C. H. Double solids, Adv. in Math., Tome 47 (1983), pp. 107-230 | Article | MR 690465 | Zbl 0509.14045

[4] Cox, D. A. The Noether-Lefschetz locus of regular elliptic surfaces with section and p g 2, Amer. J. Math., Tome 112 (1990), pp. 289-329 | Article | MR 1047301 | Zbl 0721.14017

[5] Cynk, S. Defect of a nodal hypersurface, Manuscripta Math., Tome 104 (2001), pp. 325-331 | Article | MR 1828878 | Zbl 0983.14017

[6] Deligne, P.; Dimca, A. Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières, Ann. Sci. École Norm. Sup. (4), Tome 23 (1990), pp. 645-656 | Numdam | MR 1072821 | Zbl 0743.14028

[7] Dimca, A. Topics on real and complex singularities, Friedr. Vieweg & Sohn, Braunschweig, Advanced Lectures in Mathematics (1987) | MR 1013785 | Zbl 0628.14001

[8] Dimca, A. Betti numbers of hypersurfaces and defects of linear systems, Duke Math. J., Tome 60 (1990), pp. 285-298 | Article | MR 1047124 | Zbl 0729.14017

[9] Dimca, A. Singularities and topology of hypersurfaces, Springer-Verlag, New York, Universitext (1992) | MR 1194180 | Zbl 0753.57001

[10] Dimca, A.; Saito, M.; Wotzlaw, L. A generalization of Griffiths’ theorem on rational integrals, II (2007) (preprint available at arXiv:math/0702105v6) | Zbl 1192.14009

[11] Van Geemen, B.; Werner, J. Nodal quintics in P 4 , Arithmetic of complex manifolds (Erlangen, 1988), Springer, Berlin (Lecture Notes in Math.) Tome 1399 (1989), pp. 48-59 | MR 1034256 | Zbl 0697.14027

[12] Griffiths, P. A. On the periods of certain rational integrals. II, Ann. of Math. (2), Tome 90 (1969), pp. 496-541 | Article | MR 260733 | Zbl 0215.08103

[13] Grooten, M.; Steenbrink, J. H. M. Defect and Hodge numbers of hypersurfaces (2007) (in preperation)

[14] De Jong, T.; Pfister, G. Local analytic geometry, Friedr. Vieweg & Sohn, Braunschweig, Advanced Lectures in Mathematics (2000) | MR 1760953 | Zbl 0959.32011

[15] Kloosterman, R. Elliptic K3 surfaces with geometric Mordell-Weil rank 15, Canad. Math. Bull., Tome 50 (2007), pp. 215-226 | Article | MR 2317444 | Zbl 1162.14024

[16] Kloosterman, R. Higher Noether-Lefschetz loci of elliptic surfaces, J. Differential Geom., Tome 76 (2007), pp. 293-316 | MR 2330416 | Zbl 1141.14019

[17] Kloosterman, R. On the classification of degree 1 elliptic threefolds with constant j-invariant (2008) (preprint available at arxiv:0812.3014) | Zbl 1283.14014

[18] Kloosterman, R. A different method to calculate the rank of an elliptic threefold (to appear in Rocky Mountain J. Math., available at arxiv:0812.3222) | Zbl 1257.14027

[19] Miranda, R. Smooth models for elliptic threefolds, The birational geometry of degenerations (Cambridge, Mass., 1981), Birkhäuser Boston, Mass. (Progr. Math.) Tome 29 (1983), pp. 85-133 | MR 690264 | Zbl 0583.14014

[20] Miranda, R. The basic theory of elliptic surfaces, ETS Editrice, Pisa (1989) | MR 1078016 | Zbl 0744.14026

[21] Oguiso, K.; Shioda, T. The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul, Tome 40 (1991), pp. 83-99 | MR 1104782 | Zbl 0757.14011

[22] Peters, C. A. M.; Steenbrink, J. H. M. Mixed Hodge structures, Springer, Ergebnisse der Mathematik, Tome 52 (2008) | MR 2393625 | Zbl 1138.14002

[23] Rams, S. Defect and Hodge numbers of hypersurfaces (2007) (preprint available at arXiv: math/0702114v1) | MR 2405239 | Zbl 1144.14033

[24] Schoen, C. Algebraic cycles on certain desingularized nodal hypersurfaces, Math. Ann., Tome 270 (1985), pp. 17-27 | Article | MR 769603 | Zbl 0533.14002

[25] Steenbrink, J. H. M. Intersection form for quasi-homogeneous singularities, Compositio Math., Tome 34 (1977), pp. 211-223 | Numdam | MR 453735 | Zbl 0347.14001

[26] Steenbrink, J. H. M. Adjunction conditions for one-forms on surfaces in projective three-space, Singularities and computer algebra, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 324 (2006), pp. 301-314 | MR 2228236 | Zbl 1105.14008

[27] Vosion, C. Hodge theory and complex algebraic geometry. II, Cambridge Univ. Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 77 (2003) | MR 1997577 | Zbl 1032.14002

[28] Wazir, R. Arithmetic on elliptic threefolds, Compos. Math., Tome 140 (2004), pp. 567-580 | Article | MR 2041769 | Zbl 1060.11039

[29] Werner, J. Kleine Auflösungen spezieller dreidimensionaler Varietäten, Universität Bonn Mathematisches Institut, Bonn, Bonner Mathematische Schriften, Tome 186 (1987) (Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1987) | MR 930270 | Zbl 0657.14021