Asymptotic values of minimal graphs in a disc
Annales de l'Institut Fourier, Volume 60 (2010) no. 7, p. 2357-2372

We consider solutions of the prescribed mean curvature equation in the open unit disc of euclidean n-dimensional space. We prove that such a solution has radial limits almost everywhere; which may be infinite. We give an example of a solution to the minimal surface equation that has finite radial limits on a set of measure zero, in dimension two. This answers a question of Nitsche.

Nous considérons les solutions de l´équation de la courbure moyenne prescrite sur le disque unité ouvert de l’espace euclidien. Nous prouvons qu’une telle solution a une limite radiale presque partout qui, éventuellement, peut-être infinie. Nous donnons l´exemple d´une solution de l´équation des surfaces minimales en dimension deux, qui admet des limites radiales finies sur un ensemble de mesure nulle. Ce travail répond à une question de Nitsche.

DOI : https://doi.org/10.5802/aif.2610
Classification:  53A10,  53C43
Keywords: Minimal graphs, radial limits, Fatou theorem
@article{AIF_2010__60_7_2357_0,
     author = {Collin, Pascal and Rosenberg, Harold},
     title = {Asymptotic values of minimal graphs in~a~disc},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {7},
     year = {2010},
     pages = {2357-2372},
     doi = {10.5802/aif.2610},
     mrnumber = {2849267},
     zbl = {1239.53004},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_7_2357_0}
}
Asymptotic values of minimal graphs in a disc. Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2357-2372. doi : 10.5802/aif.2610. http://www.numdam.org/item/AIF_2010__60_7_2357_0/

[1] Collin, P.; Rosenberg, H. Construction of harmonic diffeomorphisms and minimal graphs (To appear in Annals of Math) | Zbl pre05850189

[2] Jenkins, H.; Serrin, J. Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal., Tome 21 (1966), pp. 321-342 | Article | MR 190811 | Zbl 0171.08301

[3] Mikyukov, V. Two theorems on boundary properties of minimal surfaces in nonparametric form, Math. Notes, Tome 21 (1977), pp. 307-310 | Article | MR 474055 | Zbl 0402.53003

[4] Nitsche, J. On new results in the theory of minimal surfaces, B. Amer. Math. Soc., Tome 71 (1965), pp. 195-270 | Article | MR 173993 | Zbl 0135.21701