La petitesse de l’exposant critique du groupe fondamental d’une variété hyperbolique implique des résultats d’annulation pour certains espaces de cohomologie et de formes harmoniques . Nous obtenons ici des résultats de rigidité reliés à ces théorèmes d’annulations. Ceci est une généralisation de résultats déjà connus dans le cas convexe co-compact.
When is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.
Classification : 58J50, 22E40
Mots clés : formes harmoniques , variété hyperbolique, exposant critique
@article{AIF_2010__60_7_2307_0, author = {Carron, Gilles}, title = {Rigidity and $L^2$ cohomology of hyperbolic manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2307--2331}, publisher = {Association des Annales de l'institut Fourier}, volume = {60}, number = {7}, year = {2010}, doi = {10.5802/aif.2608}, mrnumber = {2848671}, zbl = {1236.53040}, language = {en}, url = {www.numdam.org/item/AIF_2010__60_7_2307_0/} }
Carron, Gilles. Rigidity and $L^2$ cohomology of hyperbolic manifolds. Annales de l'Institut Fourier, Tome 60 (2010) no. 7, pp. 2307-2331. doi : 10.5802/aif.2608. http://www.numdam.org/item/AIF_2010__60_7_2307_0/
[1] harmonic forms on complete Riemannian manifolds, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Math.) Volume 1339, Springer, Berlin, 1988, pp. 1-19 | Article | MR 961469 | Zbl 0652.53030
[2] Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992 | MR 1219310 | Zbl 0768.51018
[3] Lemme de Schwarz réel et applications géométriques, Acta Math., Volume 183 (1999) no. 2, pp. 145-169 | Article | MR 1738042 | Zbl 1035.53038
[4] Hyperbolic manifolds, amalgamated products and critical exponents, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 3, pp. 257-261 | Article | MR 1968269 | Zbl 1026.57013
[5] Rigidity of amalgamated products in negative curvature, J. Differential Geom., Volume 79 (2008) no. 3, pp. 335-387 http://projecteuclid.org/getRecord?id=euclid.jdg/1213798182 | MR 2433927 | Zbl 1206.53038
[6] Hausdorff dimension and Kleinian groups, Acta Math., Volume 179 (1997) no. 1, pp. 1-39 | Article | MR 1484767 | Zbl 0921.30032
[7] Sur le birapport au bord des -espaces, Inst. Hautes Études Sci. Publ. Math. (1996) no. 83, pp. 95-104 | Article | Numdam | MR 1423021 | Zbl 0883.53047
[8] The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988) (Progr. Nonlinear Differential Equations Appl.) Volume 4, Birkhäuser Boston, Boston, MA, 1990, pp. 251-271 | MR 1205158 | Zbl 0774.35003
[9] Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 11-25 | Article | Numdam | MR 556580 | Zbl 0439.30032
[10] Kato constants in Riemannian geometry, Math. Res. Lett., Volume 7 (2000) no. 2-3, pp. 245-261 | MR 1764320 | Zbl 1039.53033
[11] Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 214-255 | Article | MR 1760284 | Zbl 0960.58010
[12] On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 3 (2004) no. 4, pp. 705-747 | Numdam | MR 2124586 | Zbl 1170.53309
[13] Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., Volume 122 (1995) no. 3, pp. 603-625 | Article | MR 1359605 | Zbl 0854.53035
[14] Canonical metric on the domain of discontinuity of a Kleinian group, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998 (Sémin. Théor. Spectr. Géom.) Volume 16, Univ. Grenoble I, Saint, 1997–1998, pp. 9-32 | Numdam | Zbl 0979.53036
[15] Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal., Volume 18 (2009) no. 6, pp. 2017-2054 | Article | MR 2491697 | Zbl 1178.30056
[16] Complete manifolds with positive spectrum, J. Differential Geom., Volume 58 (2001) no. 3, pp. 501-534 http://projecteuclid.org/getRecord?id=euclid.jdg/1090348357 | MR 1906784 | Zbl 1032.58016
[17] The Hodge cohomology of a conformally compact metric, J. Differential Geom., Volume 28 (1988) no. 2, pp. 309-339 http://projecteuclid.org/getRecord?id=euclid.jdg/1214442281 | MR 961517 | Zbl 0656.53042
[18] Hodge theory on hyperbolic manifolds, Duke Math. J., Volume 60 (1990) no. 2, pp. 509-559 | Article | MR 1047764 | Zbl 0712.58006
[19] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | Article | MR 450547 | Zbl 0336.30005
[20] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, Volume 149, Springer-Verlag, New York, 1994 | MR 1299730 | Zbl 0809.51001
[21] Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2), Volume 152 (2000) no. 1, pp. 113-182 | Article | MR 1792293 | Zbl 0970.22011
[22] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 171-202 | Article | Numdam | MR 556586 | Zbl 0439.30034
[23] Related aspects of positivity in Riemannian geometry, J. Differential Geom., Volume 25 (1987) no. 3, pp. 327-351 http://projecteuclid.org/getRecord?id=euclid.jdg/1214440979 | MR 882827 | Zbl 0615.53029
[24] On conformally compact Einstein manifolds, Math. Res. Lett., Volume 8 (2001) no. 5-6, pp. 671-688 | MR 1879811 | Zbl 1053.53030
[25] On the -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J., Volume 115 (2002) no. 2, pp. 311-327 | Article | MR 1944573 | Zbl pre01941444
[26] Sur la -cohomologie des variétés à courbure négative, Duke Math. J., Volume 122 (2004) no. 1, pp. 145-180 | Article | MR 2046810 | Zbl 1069.58013
[27] Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2), Volume 143 (1996) no. 2, pp. 331-355 | Article | MR 1381989 | Zbl 0843.22019