Invariants of the half-liberated orthogonal group
Annales de l'Institut Fourier, Volume 60 (2010) no. 6, p. 2137-2164

The half-liberated orthogonal group O n * appears as intermediate quantum group between the orthogonal group O n , and its free version O n + . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between O n * and U n , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that the dual discrete quantum group has polynomial growth.

Le groupe orthogonal semi-libéré O n * est un groupe quantique intermédiaire entre le groupe orthogonal O n et sa version libre O n + . Nous discutons ici ses propriétés algébriques de base, et nous classifions ses représentations irréductibles. Cette classification est établie grâce à une mise en relation avec le groupe U n et des méthodes inspirées de la théorie des algèbres de Lie. Un groupe discret non abélien joue le rôle de réseau des poids. Nous utilisons ces résultats pour montrer que le groupe quantique discret dual est à croissance polynomiale.

DOI : https://doi.org/10.5802/aif.2579
Classification:  20G42,  16W30,  46L65
Keywords: Quantum group, maximal torus, root system
@article{AIF_2010__60_6_2137_0,
     author = {Banica, Teodor and Vergnioux, Roland},
     title = {Invariants of the half-liberated orthogonal group},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {6},
     year = {2010},
     pages = {2137-2164},
     doi = {10.5802/aif.2579},
     mrnumber = {2791653},
     zbl = {1277.46040},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_6_2137_0}
}
Banica, Teodor; Vergnioux, Roland. Invariants of the half-liberated orthogonal group. Annales de l'Institut Fourier, Volume 60 (2010) no. 6, pp. 2137-2164. doi : 10.5802/aif.2579. http://www.numdam.org/item/AIF_2010__60_6_2137_0/

[1] Banica, T. Le groupe quantique compact libre U(n), Comm. Math. Phys., Tome 190 (1997), pp. 143-172 | Article | MR 1484551 | Zbl 0906.17009

[2] Banica, T. Symmetries of a generic coaction, Math. Ann., Tome 314 (1999), pp. 763-780 | Article | MR 1709109 | Zbl 0928.46038

[3] Banica, T.; Bichon, J. Quantum groups acting on 4 points, J. Reine Angew. Math., Tome 626 (2009), pp. 74-114 | MR 2492990 | Zbl 1187.46058

[4] Banica, T.; Bichon, J.; Collins, B. The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Tome 22 (2007), pp. 345-384 | MR 2376808 | Zbl 1185.46046

[5] Banica, T.; Collins, B. Integration over compact quantum groups, Publ. Res. Inst. Math. Sci., Tome 43 (2007), pp. 277-302 | Article | MR 2341011 | Zbl 1129.46058

[6] Banica, T.; Speicher, R. Liberation of orthogonal Lie groups, Adv. Math., Tome 222 (2009), pp. 1461-1501 | Article | MR 2554941 | Zbl pre05614878

[7] Banica, T.; Vergnioux, R. Fusion rules for quantum reflection groups, J. Noncommut. Geom., Tome 3 (2009), pp. 327-359 | Article | MR 2511633 | Zbl pre05578949

[8] Banica, T.; Vergnioux, R. Growth estimates for discrete quantum groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Tome 12 (2009), pp. 321-340 | Article | MR 2541400 | Zbl 1189.46059

[9] Bhowmick, J.; Goswami, D.; Skalski, A. Quantum isometry groups of 0-dimensional manifolds (arxiv:0807.4288)

[10] Bichon, J.; De Rijdt, A.; Vaes, S. Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys., Tome 262 (2006), pp. 703-728 | Article | MR 2202309 | Zbl 1122.46046

[11] Brauer, R. On algebras which are connected with the semisimple continuous groups, Ann. of Math., Tome 38 (1937), pp. 857-872 | Article | JFM 63.0873.02 | MR 1503378 | Zbl 0017.39105

[12] Collins, B.; Śniady, P. Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys., Tome 264 (2006), pp. 773-795 | Article | MR 2217291 | Zbl 1108.60004

[13] Drinfeld, V. G. Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI (1987), pp. 798-820 | MR 934283

[14] Goswami, D. Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys., Tome 285 (2009), pp. 141-160 | Article | MR 2453592 | Zbl 1228.81188

[15] Köstler, C.; Speicher, R. A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Comm. Math. Phys., Tome 291 (2009), pp. 473-490 | Article | MR 2530168 | Zbl 1183.81099

[16] Pinzari, C.; Roberts, J. Ergodic actions of compact quantum groups from solutions of the conjugate equations (arxiv:0808.3326)

[17] Vaes, S.; Vergnioux, R. The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J., Tome 140 (2007), pp. 35-84 | Article | MR 2355067 | Zbl 1129.46062

[18] Vergnioux, R. Orientation of quantum Cayley trees and applications, J. Reine Angew. Math., Tome 580 (2005), pp. 101-138 | Article | MR 2130588 | Zbl 1079.46048

[19] Vergnioux, R. The property of rapid decay for discrete quantum groups, J. Operator Theory, Tome 57 (2007), pp. 303-324 | MR 2329000 | Zbl 1120.58004

[20] Wang, S. Free products of compact quantum groups, Comm. Math. Phys., Tome 167 (1995), pp. 671-692 | Article | MR 1316765 | Zbl 0838.46057

[21] Wang, S. Quantum symmetry groups of finite spaces, Comm. Math. Phys., Tome 195 (1998), pp. 195-211 | Article | MR 1637425 | Zbl 1013.17008

[22] Wenzl, H. On the structure of Brauer’s centralizer algebras, Ann. of Math., Tome 128 (1988), pp. 173-193 | Article | MR 951511 | Zbl 0656.20040

[23] Woronowicz, S. L. Compact matrix pseudogroups, Comm. Math. Phys., Tome 111 (1987), pp. 613-665 | Article | MR 901157 | Zbl 0627.58034

[24] Woronowicz, S. L. Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Tome 93 (1988), pp. 35-76 | Article | MR 943923 | Zbl 0664.58044

[25] Woronowicz, S. L. Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys., Tome 122 (1989), pp. 125-170 | Article | MR 994499 | Zbl 0751.58042