Regular projectively Anosov flows on three-dimensional manifolds
Annales de l'Institut Fourier, Volume 60 (2010) no. 5, p. 1649-1684

We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of T 2 ×I-models. We also apply our method to rigidity problems of some group actions.

Nous classifions complètement les flots projectivement Anosov réguliers en dimension trois. Plus précisément, nous prouvons qu’un tel flot est un flot d’Anosov ou se décompose en une union finie de T 2 ×I-modèles. Nous appliquons aussi notre méthode au problème de rigidité de certaines actions de groupes.

DOI : https://doi.org/10.5802/aif.2569
Classification:  37D30,  57R30
Keywords: Projectively Anosov flows, bi-contact structures
@article{AIF_2010__60_5_1649_0,
     author = {Asaoka, Masayuki},
     title = {Regular projectively Anosov flows on three-dimensional manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {5},
     year = {2010},
     pages = {1649-1684},
     doi = {10.5802/aif.2569},
     mrnumber = {2766227},
     zbl = {1202.37030},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_5_1649_0}
}
Asaoka, Masayuki. Regular projectively Anosov flows on three-dimensional manifolds. Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1649-1684. doi : 10.5802/aif.2569. http://www.numdam.org/item/AIF_2010__60_5_1649_0/

[1] Arroyo, A.; Rodriguez Hertz, F. Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 20 (2003), pp. 805-841 | Article | Numdam | MR 1995503 | Zbl 1045.37006

[2] Asaoka, M. Non-homogeneous locally free actions of the affine group (preprint. arXiv:math.0702833)

[3] Asaoka, M. A classification of three dimensional regular projectively Anosov flows, Proc. Japan Acad., Ser. A, Tome 80 (2004) no. 10, pp. 194-197 | Article | MR 2112247 | Zbl 1160.37337

[4] Asaoka, M. Classification of regular and non-degenerate projectively Anosov diffeomorphisms on three dimensional manifolds, J. Math. Kyoto Univ., Tome 46 (2006) no. 2, pp. 349-356 | MR 2284347 | Zbl 1111.37016

[5] Asaoka, M. Codimension-one foliations with a transversely contracting flow, Foliations 2005, World Sci. Publ., Hackensack, NJ (2006), pp. 21-36 | MR 2284774

[6] Barbot, T. Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems, Tome 15 (1995) no. 2, pp. 247-270 | Article | MR 1332403 | Zbl 0826.58025

[7] Bonatti, C.; Díaz, L. J.; Viana, M. Dynamics beyond uniform hyperbolicity, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, Tome 102 (2005) (A global geometric and probabilistic perspective, Mathematical Physics, III) | MR 2105774 | Zbl 1060.37020

[8] Cantwell, J.; Conlon, L. Reeb stability for noncompact leaves in foliated 3-manifolds, Proc. Amer. Math. Soc., Tome 33 (1981) no. 2, pp. 408-410 | MR 624942 | Zbl 0504.57012

[9] Cantwell, J.; Conlon, L. The theory of levels, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 70 (1988), pp. 1-10 | MR 948686 | Zbl 0656.57016

[10] Cantwell, J.; Conlon, L. Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ (2002), pp. 225-261 | MR 1882772 | Zbl 1011.57009

[11] De Melo, W.; Van Strien, S. One-dimensional dynamics, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 25 (1993) | MR 1239171 | Zbl 0791.58003

[12] Doering, C. I. Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985), Longman Sci. Tech., Harlow (Pitman Res. Notes Math. Ser.) Tome 160 (1987), pp. 59-89 | MR 907891 | Zbl 0631.58016

[13] Eliashberg, Y. M.; Thurston, W. P. Confoliations, American Mathematical Society, Providence, RI, University Lecture Series, Tome 13 (1998) | MR 1483314 | Zbl 0893.53001

[14] Ghys, E. Actions localement libres du groupe affine, Invent. Math., Tome 82 (1985) no. 3, pp. 479-526 | Article | MR 811548 | Zbl 0577.57010

[15] Ghys, E. Rigidité différentiable des groupes fuchiens, Inst. Hautes Études Sci. Publ. Math., Tome 78 (1993), pp. 163-185 | Article | Numdam | MR 1259430 | Zbl 0812.58066

[16] Ghys, E.; Sergiescu, V. Stabilité et conjugaison différentiable pour certains feuilletages, Topology, Tome 19 (1980) no. 2, pp. 179-197 | Article | MR 572582 | Zbl 0478.57017

[17] Homburg, A. J. Piecewise smooth interval maps with non-vanishing derivative, Ergodic Theory Dynam. Systems, Tome 20 (2000) no. 3, pp. 749-773 | Article | MR 1764926 | Zbl 0963.37032

[18] Mañé, R. Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Tome 100 (1985) no. 4, pp. 495-524 (Erratum. Comm. Math. Phys. 112 (1987), no. 4, 721–724) | Article | MR 806250 | Zbl 0583.58016

[19] Mitsumatsu, Y. Anosov flows and non-stein symplectic manifolds, Ann. Inst. Fourier, Tome 45 (1995) no. 5, pp. 1407-1421 | Article | Numdam | MR 1370752 | Zbl 0834.53031

[20] Mitsumatsu, Y. Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ (2002), pp. 75-125 | MR 1882766 | Zbl 1008.57003

[21] Moussu, R.; Roussarie, R. Relations de conjugaison et de cobordisme entre certains feuilletages, Inst. Hautes Études Sci. Publ. Math., Tome 43 (1974), pp. 142-168 | Article | Numdam | MR 358810 | Zbl 0356.57018

[22] Newhouse, S.; Palis, J. Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York (1973), pp. 293-301 | MR 339284 | Zbl 0279.58010

[23] Noda, T. Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier, Tome 50 (2000) no. 5, pp. 1617-1647 | Article | Numdam | MR 1800129 | Zbl 1023.37014

[24] Noda, T. Regular projectively Anosov flows with compact leaves, Ann. Inst. Fourier, Tome 54 (2004) no. 2, pp. 353-363 | Article | Numdam | MR 2074426 | Zbl 1058.57021

[25] Noda, T.; Tsuboi, T. Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ (2002), pp. 403-419 | MR 1882782 | Zbl 1002.37016

[26] Ratner, M. E. Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki, Tome 6 (1969), pp. 693-704 ((Translation to English) Math. Notes 6 1969, 880–886) | MR 260977 | Zbl 0198.56804

[27] Shub, M. Global stability of dynamical systems, Springer-Verlag, New York (1987) (With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy) | MR 869255 | Zbl 0606.58003

[28] Tsuboi, T. Regular projectively Anosov flows on the Seifert fibered 3-manifolds, J. Math. Soc. Japan, Tome 56 (2004) no. 4, pp. 1233-1253 | Article | MR 2092947 | Zbl 1068.57027