The monodromy conjecture for zeta functions associated to ideals in dimension two
Annales de l'Institut Fourier, Volume 60 (2010) no. 4, p. 1347-1362

The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.

In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an ideal. Afterwards we prove a generalized monodromy conjecture for arbitrary ideals in two variables.

La conjecture de la monodromie prédit que chaque pôle de la fonction zêta topologique (ou analogue) induit une valeur propre de la monodromie. Cette conjecture a déjà beaucoup été étudiée ; toutefois elle est prouvée en général seulement pour des fonctions zêta associées à un polynôme en deux variables. Dans cet article nous traitons des fonctions zêta associées à un idéal. En dimension quelconque nous obtenons une formule (semblable à celle d’A’Campo) qui calcule les valeurs propres de la “monodromie de Verdier”. Pour des idéaux en deux variables, nous prouvons ensuite une conjecture généralisée de la monodromie.

DOI : https://doi.org/10.5802/aif.2557
Classification:  14E15,  32S40,  14H20
Keywords: Zeta functions for ideals, Verdier monodromy, monodromy conjecture
@article{AIF_2010__60_4_1347_0,
     author = {Van Proeyen, Lise and Veys, Willem},
     title = {The monodromy conjecture for zeta functions associated to ideals in dimension two},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {4},
     year = {2010},
     pages = {1347-1362},
     doi = {10.5802/aif.2557},
     mrnumber = {2722244},
     zbl = {1211.14021},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_4_1347_0}
}
The monodromy conjecture for zeta functions associated to ideals in dimension two. Annales de l'Institut Fourier, Volume 60 (2010) no. 4, pp. 1347-1362. doi : 10.5802/aif.2557. http://www.numdam.org/item/AIF_2010__60_4_1347_0/

[1] Abramovich, D.; Karu, K.; Matsuki, K.; Włodarczyk, J. Torification and factorization of birational maps, J. Amer. Math. Soc., Tome 15 (2002), pp. 531-572 | Article | MR 1896232 | Zbl 1032.14003

[2] A’Campo, N. La fonction zêta d’une monodromie, Comment. Math. Helv., Tome 50 (1975), pp. 233-248 | Article | MR 371889 | Zbl 0333.14008

[3] Artal-Bartolo, E.; Cassou-Noguès, P.; Luengo, I.; Melle-Hernandez, A. Monodromy conjecture for some surface singularities, Ann. Scient. Ec. Norm. Sup., Tome 35 (2002), pp. 605-640 | Numdam | MR 1981174 | Zbl 1020.32025

[4] Artal-Bartolo, E.; Cassou-Noguès, P.; Luengo, I.; Melle-Hernandez, A. Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc., Tome 178 (2005) no. 841, pp. 85p. | MR 2172403 | Zbl 1095.14005

[5] Budur, N.; Mustaţǎ, M.; Saito, M. Bernstein-Sato polynomials of arbitrary varieties, Compos. Math., Tome 142 (2006) no. 3, pp. 779-797 | Article | MR 2231202 | Zbl 1112.32014

[6] Deligne, P. Le formalisme des cycles évanescents, SGA7 XIII and XIV, Lect. Notes in Math., Springer Berlin, Tome 340 (1973), p. 82-115 and 116–164 | Zbl 0266.14008

[7] Denef, J. Degree of local zeta functions and monodromy, Compos. Math., Tome 89 (1994), pp. 207-216 | Numdam | MR 1255694 | Zbl 0932.11073

[8] Denef, J.; Loeser, F. Caractéristiques d’Euler-Poincaré, fonctions zêta locales, et modifications analytiques, J. Amer. Math. Soc., Tome 5 (1992), pp. 705-720 | MR 1151541 | Zbl 0777.32017

[9] Denef, J.; Loeser, F. Motivic Igusa zeta functions, Journal of Algebraic Geometry, Tome 7 (1998), pp. 505-537 | MR 1618144 | Zbl 0943.14010

[10] Dimca, A. Sheaves in topology, Springer-Verlag, Berlin Heidelberg (2004) | MR 2050072 | Zbl 1043.14003

[11] Eisenbud, D.; Harris, J. The Geometry of Schemes, Springer-Verlag, New York (2000) | MR 1730819 | Zbl 0960.14002

[12] Fulton, W. Intersection Theory, Springer-Verlag, Berlin Heidelberg (1984) | MR 732620 | Zbl 0541.14005

[13] Gyoja, A. Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ., Tome 33 (1993), pp. 399-411 | MR 1231750 | Zbl 0797.32007

[14] Hartshorne, R. Algebraic Geometry, Springer-Verlag, New York (1977) | MR 463157 | Zbl 0367.14001

[15] Howald, J.; Mustaţǎ, M.; Yuen, C. On Igusa zeta functions of monomial ideals, Proc. Amer. Math. Soc., Tome 135 (2007) no. 11, pp. 3425-3433 | Article | MR 2336554 | Zbl 1140.14003

[16] Igusa, J. An introduction to the theory of local zeta functions, Advanced Mathematics, AMS/IP Studies (2000) | Zbl 0959.11047

[17] Lemahieu, A.; Veys, W. On monodromy for a class of surfaces, C. R. Acad. Sci. Paris, Tome 345/11 (2007), pp. 633-638 | MR 2371481 | Zbl 1140.14013

[18] Lemahieu, A.; Veys, W. Zeta functions and monodromy for surfaces that are general for a toric idealistic cluster, Intern. Math. Res. Notices (2008) (doi: 10.1093/imrn/rnn122) | MR 2471295 | Zbl 1161.14017

[19] Loeser, F. Fonctions d’Igusa p-adiques et polynômes de Bernstein, Amer. J. Math., Tome 110 (1988), pp. 1-21 | Article | MR 926736 | Zbl 0644.12007

[20] Loeser, F. Fonctions d’Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math., Tome 412 (1990), pp. 75-96 | Article | MR 1079002 | Zbl 0713.11083

[21] Malgrange, B. Polynôme de Bernstein-Sato et cohomologie évanescente, Astérisque, Analysis and topology on singular spaces, II, III, (Luminy, 1981), Tome 101–102 (1983), pp. 243-267 | MR 737934 | Zbl 0528.32007

[22] Rodrigues, B. On the Monodromy Conjecture for curves on normal surfaces, Math. Proc. of the Cambridge Philosophical Society, Tome 136 (2004), pp. 313-324 | Article | MR 2040577 | Zbl 1063.14045

[23] Rodrigues, B.; Veys, W. Holomorphy of Igusa’s and topological zeta functions for homogeneous polynomials, Pacific J. Math., Tome 201 (2001), pp. 429-441 | Article | MR 1875902 | Zbl 1054.11061

[24] Sabbah, C. Proximité évanescante, I. La structure polaire d’un D-module, Compos. Math., Tome 62 (1987), pp. 283-328 (II. Equations fonctionnelles pour plusieurs fonctions analytiques, 64 (1987), p. 213–241) | Numdam | MR 901394 | Zbl 0622.32012

[25] Van Proeyen, L.; Veys, W. Poles of the topological zeta function associated to an ideal in dimension two, Math. Z., Tome 260 (2008), pp. 615-627 | Article | MR 2434472 | Zbl 1146.14010

[26] Verdier, J.-L. Spécialisation de faisceaux et monodromie modérée, Astérisque, Tome 101–102 (1983), pp. 332-364 | MR 737938 | Zbl 0532.14008

[27] Veys, W. Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France, Tome 121 (1993), pp. 545-598 | Numdam | MR 1254752 | Zbl 0812.14014

[28] Veys, W. Vanishing of principal value integrals on surfaces, J. Reine Angew. Math., Tome 598 (2006), pp. 139-158 | Article | MR 2270570 | Zbl 1106.14010

[29] Veys, W.; Zuniga-Galindo, W.A. Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra, Trans. Amer. Math. Soc., Tome 360 (2008), pp. 2205-2227 | Article | MR 2366980 | Zbl pre05229035