For we calculate the norm of the Fourier transform from the space on a finite abelian group to the space on the dual group.
Pour les valeurs de et comprises entre et l’infini, nous déterminons la norme de la transformée de Fourier de l’espace d’un groupe abélien fini vers l’espace du groupe dual.
Keywords: Fourier transform, finite abelian groups, wave packets, biunimodular functions
Mot clés : transformée de Fourier, groupes abéliens finis, paquets d’ondes, fonctions bi-unimodulaires
@article{AIF_2010__60_4_1317_0, author = {Gilbert, John and Rzeszotnik, Ziemowit}, title = {The norm of the {Fourier} transform on finite abelian groups}, journal = {Annales de l'Institut Fourier}, pages = {1317--1346}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {4}, year = {2010}, doi = {10.5802/aif.2556}, zbl = {1202.42065}, mrnumber = {2722243}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2556/} }
TY - JOUR AU - Gilbert, John AU - Rzeszotnik, Ziemowit TI - The norm of the Fourier transform on finite abelian groups JO - Annales de l'Institut Fourier PY - 2010 SP - 1317 EP - 1346 VL - 60 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2556/ DO - 10.5802/aif.2556 LA - en ID - AIF_2010__60_4_1317_0 ER -
%0 Journal Article %A Gilbert, John %A Rzeszotnik, Ziemowit %T The norm of the Fourier transform on finite abelian groups %J Annales de l'Institut Fourier %D 2010 %P 1317-1346 %V 60 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2556/ %R 10.5802/aif.2556 %G en %F AIF_2010__60_4_1317_0
Gilbert, John; Rzeszotnik, Ziemowit. The norm of the Fourier transform on finite abelian groups. Annales de l'Institut Fourier, Volume 60 (2010) no. 4, pp. 1317-1346. doi : 10.5802/aif.2556. http://www.numdam.org/articles/10.5802/aif.2556/
[1] Constructing symmetric ciphers using the CAST design procedure, Des. Codes Cryptography, Volume 12 (1997) no. 3, pp. 283-316 | DOI | MR | Zbl
[2] Generating bent sequences, Discrete Appl. Math., Volume 39 (1992) no. 2, pp. 155-159 | DOI | MR | Zbl
[3] On the representation of bent functions by bent rectangles, Probabilistic Methods in Discrete Mathematics: Proceedings of the Fifth International Petrozavodsk Conference, Utrecht, Boston: VSP (2002), pp. 121-135
[4] An inequality in the theory of Fourier integrals, Izv. Akad. Nauk SSSR Ser. Mat., Volume 25 (1961), pp. 531-542 | MR | Zbl
[5] Inequalities in Fourier analysis, Ann. Math. (2), Volume 102 (1975), pp. 159-182 | DOI | MR | Zbl
[6] Functions of modulus 1 on whose Fourier transforms have constant modulus, and “cyclic n-roots”, Recent advances in Fourier analysis and its applications, Proc. NATO/ASI, Il Ciocco/Italy 1989, NATO ASI Ser., Ser. C 315, 1990 | MR | Zbl
[7] A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic -roots, J. Symb. Comput., Volume 12 (1991) no. 3, pp. 329-336 | DOI | MR | Zbl
[8] New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries, C. R. Acad. Sci., Paris, Sér. I, Volume 320 (1995) no. 3, pp. 319-324 | MR | Zbl
[9] On polynomials with coefficients of modulus one, Bull. Lond. Math. Soc., Volume 9 (1997), pp. 171-176 | DOI | MR | Zbl
[10] Two new classes of bent functions, Helleseth, Tor (ed.), Advances in cryptology - EUROCRYPT ’93. Lect. Notes Comput. Sci. 765, Springer, Berlin, 1994 | MR | Zbl
[11] Chirps on finite cyclic groups, Proc. SPIE, Volume 5914 (2005), pp. 175-180
[12] Binary bent sequences of order 64, Util. Math., Volume 52 (1997), pp. 141-151 | MR | Zbl
[13] Wavelet analysis and signal processing, Wavelets and their applications, Jones and Bartlett Publishers, Boston, MA, 1992, pp. 153-178 | MR | Zbl
[14] Entropy-based algorithms for best basis selection, IEEE Trans. Inf. Theory, Volume 38 (1992) no. 2, Pt. 2, pp. 713-718 | DOI | Zbl
[15] Elementary Hadamard difference sets, Proc. 6th Southeast. Conf. Comb., Graph Theor., and Comput.; Boca Raton, Fl, 1975 | MR | Zbl
[16] Cryptographer’s Toolkit for Construction of -Bit Bent Functions, Cryptology ePrint Archive, Report 2005/089, 2005
[17] Uncertainty principles and signal recovery, SIAM J. Appl. Math., Volume 49 (1989) no. 3, pp. 906-931 | DOI | MR | Zbl
[18] Pointwise convergence of Fourier series, Ann. Math. (2), Volume 98 (1973), pp. 551-571 | DOI | MR | Zbl
[19] Metaplectic operators on , preprint | Zbl
[20] Orthogonal maximal abelian -subalgebras of the matrices and cyclic -roots., Doplicher, S. (ed.) et al., Operator algebras and quantum field theory. Accademia Nazionale dei Lincei, Roma, Italy. Cambridge, MA: International Press, 1997 | MR | Zbl
[21] Some new properties of Fourier constants, Math. Ann., Volume 97 (1927), pp. 159-209 | DOI | MR
[22] Joint space-frequency segmentation using balanced wavelet packet trees for least-cost image representation, IEEE Trans. on Image Proc., Volume 6 (1997) no. 9, pp. 1213-1230 | DOI
[23] A maximum problem in harmonic analysis, Am. J. Math., Volume 76 (1954), pp. 839-852 | DOI | MR | Zbl
[24] Abstract harmonic analysis., 2, Berlin-Heidelberg-New York: Springer-Verlag VIII, 1970 | MR | Zbl
[25] Image Compression with Multitree Tilings, Proc. ICASSP-2005, Philadelphia, PA., March 2005
[26] estimates on the bilinear Hilbert transform for , Ann. Math. (2), Volume 146 (1997) no. 3, pp. 693-724 | DOI | MR | Zbl
[27] On Calderón’s conjecture, Ann. Math. (2), Volume 149 (1999) no. 2, pp. 475-496 | DOI | MR | Zbl
[28] Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders, Trans. Am. Math. Soc., Volume 356 (2004) no. 11, pp. 4343-4358 | DOI | MR | Zbl
[29] Finding mixed cells in the mixed volume computation, Found. Comput. Math., Volume 1 (2001) no. 2, pp. 161-181 | DOI | MR | Zbl
[30] Gaussian kernels have only Gaussian maximizers, Invent. Math., Volume 102 (1990) no. 1, pp. 179-208 | DOI | MR | Zbl
[31] On the mean values of certain trigonometrical polynomials. II, Ill. J. Math., Volume 6 (1962), pp. 1-39 | MR | Zbl
[32] The theory of error-correcting codes, 16, North-Holland Mathematical Library, Amsterdam - New York - Oxford, 1977 | Zbl
[33] The Donoho–Stark uncertainty principle for a finite abelian group, Acta Math. Univ. Comen. New Ser., Volume 73 (2004) no. 2, pp. 155-160 | MR | Zbl
[34] Propagation characteristics of Boolean functions, Advances in Cryptology, Proc. Workshop, EUROCRYPT ’90, Lect. Notes Comput. Sci. 473, 1991 | MR | Zbl
[35] Discrete-time, discrete-frequency, time-frequency analysis, IEEE Trans. Signal Process., Volume 46 (1998) no. 6, pp. 1517-1527 | DOI | Zbl
[36] On “bent” functions., J. Comb. Theory, Ser. A, Volume 20 (1976), pp. 300-305 | DOI | MR | Zbl
[37] Combinatorial mathematics, John Wiley and Sons, New York, 1963 | MR | Zbl
[38] Some polynomial extremal problems which emerged in the twentieth century, Byrnes, James S. (ed.), Twentieth century harmonic analysis–a celebration. Proceedings of the NATO Advanced Study Institute, Il Ciocco, Italy, July 2-15, 2000. Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 33, 2001 | MR | Zbl
[39] Cyclotomic integers and finite geometry, J. Am. Math. Soc., Volume 12 (1999) no. 4, pp. 929-952 | DOI | MR | Zbl
[40] Towards Ryser’s conjecture, Casacuberta, Carles (ed.) et al., 3rd European congress of mathematics (ECM), Barcelona, Spain, July 10-14, 2000. Volume I. Basel: Birkhäuser. Prog. Math. 201, 2001 | MR | Zbl
[41] Enumeration of all solutions of a combinatorial linear inequality system arising from the polyhedral homotopy continuation method, J. Oper. Res. Soc. Japan, Volume 45 (2002) no. 1, pp. 64-82 | MR | Zbl
[42] An uncertainty principle for cyclic groups of prime order, Math. Res. Lett., Volume 12 (2005) no. 1, pp. 121-127 | MR | Zbl
[43] A fast algorithm for adapted time-frequency tilings, Appl. Comput. Harmon. Anal., Volume 3 (1996) no. 2, pp. 91-99 | DOI | MR | Zbl
[44] Character sums and difference sets, Pac. J. Math., Volume 15 (1965), pp. 319-346 | MR | Zbl
[45] Discrete chirp-Fourier transform and its application in chirp rate estimation, IEEE Trans. on Signal Processing, Volume 48(11) (2000), pp. 3122-3133 | MR | Zbl
[46] Analysis and synthesis of bent sequences, Proc. IEE, Volume 136, Pt. E. (1989), pp. 112-123
Cited by Sources: