On démontre une dualité de Poincaré - Verdier dans le cadre de la cohomologie o-minimale des faisceaux avec support compact et définissable sur des espaces définissablement normaux, définissablement localement compacts dans une structure o-minimale arbitraire.
Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.
Classification : 03C64, 55N30
Mots clés : Structure o-minimale, cohomologie des faisceaux
@article{AIF_2010__60_4_1259_0, author = {Edmundo, M\'ario J. and Prelli, Luca}, title = {Poincar\'e - Verdier duality in o-minimal structures}, journal = {Annales de l'Institut Fourier}, pages = {1259--1288}, publisher = {Association des Annales de l'institut Fourier}, volume = {60}, number = {4}, year = {2010}, doi = {10.5802/aif.2554}, mrnumber = {2722241}, zbl = {pre05793932}, language = {en}, url = {www.numdam.org/item/AIF_2010__60_4_1259_0/} }
Edmundo, Mário J.; Prelli, Luca. Poincaré - Verdier duality in o-minimal structures. Annales de l'Institut Fourier, Tome 60 (2010) no. 4, pp. 1259-1288. doi : 10.5802/aif.2554. http://www.numdam.org/item/AIF_2010__60_4_1259_0/
[1] Corrigendum to “Transfer methods for o-minimal topology”, J. Symb. Logic, Volume 72 (2007) no. 3, p. 1079-1080 | Article | MR 2354917 | Zbl 1119.03334
[2] Transfer methods for o-minimal topology, J. Symb. Logic, Volume 68 (2003) no. 3, pp. 785-794 | Article | MR 2000077 | Zbl 1060.03059
[3] Real Algebraic Geometry, Springer-Verlag, 1998 | MR 1659509 | Zbl 0912.14023
[4] Sheaf theory, Second Edition, Springer-Verlag, 1997 | MR 1481706 | Zbl 0874.55001
[5] An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000). Available in RAAG preprint server (http://ihp-raag.org/) | MR 2432120
[6] La topologie du spectre réel, in Ordered fields and real algebraic geometry, Contemporary Mathematics, Volume 8 (1982), pp. 27-59 | MR 653174 | Zbl 0485.14007
[7] The homotopy axiom in semi-algebraic sheaf cohomology, J. reine angew. Maths., Volume 355 (1985), pp. 108-128 | Article | MR 772485 | Zbl 0543.55004
[8] Homology of locally semialgebraic spaces, LNM 1484, Springer-Verlag, 1991 | MR 1176311 | Zbl 0751.14033
[9] On the homology of algebraic varieties over real closed fields, J. reine u.angew. Math., Volume 335 (1982), pp. 122-163 | Article | MR 667464 | Zbl 0484.14006
[10] Lectures on algebraic topology, Springer-Verlag, 1995 | MR 1335915 | Zbl 0872.55001
[11] Covering definable manifolds by open definable subsets, In: Logic Colloquium ’05, Volume 28, Lecture Notes in Logic, 2008 ((ed., C. Dimitracopoulos et al.) Cambridge University Press) | MR 2395801 | Zbl 1135.03012
[12] Sheaf cohomology in o-minimal structures, J. Math. Logic, Volume 6 (2006) no. 2, pp. 163-179 | Article | MR 2317425 | Zbl 1120.03024
[13] Definably compact abelian groups, J. Math. Log., Volume 4 (2004) no. 2, pp. 163-180 | Article | MR 2114966 | Zbl 1070.03025
[14] Comparation theorems for o-minimal singular (co)homology, Trans. Amer. Math. Soc., Volume 360 (2008) no. 9, pp. 4889-4912 | Article | MR 2403708 | Zbl 1153.03010
[15] The Lefschetz coincidence theorem in o-minimal expansions of fields, Topology Appl., Volume 156 (2009) no. 15, pp. 2470-2484 | Article | MR 2546949 | Zbl 1179.55002
[16] Théorie des faisceaux, Hermann, 1958 | MR 102797
[17] Cohomology of sheaves, Springer Verlag, 1986 | MR 842190
[18] Sheaves on manifolds, Springer Verlag, 1990 | MR 1074006 | Zbl 0709.18001
[19] Ind-sheaves Volume 271, Astérisque, 2001 (136 pp) | MR 1827714 | Zbl 0993.32009
[20] Categories and sheaves, Springer Verlag, 2005 | MR 2182076 | Zbl 1118.18001
[21] Sheaves of continuous definable functions, J. Symb. Logic, Volume 53 (1988) no. 4, pp. 1165-1169 | Article | MR 973106 | Zbl 0683.03018
[22] Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova, Volume 120 (2008), pp. 167-216 | Numdam | MR 2492657 | Zbl 1171.32002
[23] Tame topology and o-minimal structures, Cambridge University Press, 1998 | MR 1633348 | Zbl 0953.03045
[24] Covering definable open subsets by open cells, In: O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry (M. Edmundo, D. Richardson and A. Wilkie eds.), Cuvillier Verlag, 2005
[25] O-minimal homology, PhD. Thesis (1996), University of Illinois at Urbana-Champaign